精英家教网 > 初中数学 > 题目详情
15.如图,在四边形ABCD中,AD∥BC,AD=4,BC=5,E、F分别为AB和DC的中点,则EF的长为$\frac{9}{2}$.

分析 利用梯形的中位线定理即可直接求解.

解答 解:∵AD∥BC,E、F分别为AB和DC的中点,
∴EF=$\frac{1}{2}$(AD+BC)=$\frac{1}{2}$×(4+5)=$\frac{9}{2}$.
故答案是:$\frac{9}{2}$.

点评 本题考查了梯形的中位线定理,梯形的中位线平移与底,且等于两底和的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,E,F,G,H分别是边AB,BC,CD,DA的中点.
(1)判断四边形EFGH的形状,并证明你的结论;
(2)当BD,AC满足什么条件时,四边形EFGH是正方形.(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,将三角形ABC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1
(1)画出三角形A1B1C1
(2)写出点A1、B1、C1的坐标:A1(0,2),B1(-3,-5),C1(5,0);
(3)三角形ABC的面积为$\frac{41}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,直线y=-$\frac{4}{3}$x+4与x轴、y轴分别相交于点A,B,点C从点O出发沿射线OB方向以每秒1个单位速度运动,同时点D从点B出发沿BA方向以相同的速度向点A运动.当点D到达点A同时停止运动,点C也随之停止.连接CD,过CD的中点E作EF⊥CD交y轴于点F,交x轴于点G,设运动的时间时t秒.
(1)当t<4时,求BC和AD的长(用含t的代数式表示);
(2)当t=4时,求线段DG的长;
(3)在点C和点D的运动过程中,
①当直线FG经过△ABO的顶点时,求出t的值;
②在整个运动过程中,求点E的运动路径长(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,经过点A(0,6)的抛物线y=$\frac{1}{2}$x2+bx+c与x轴相交于B(-2,0)、C两点.
(1)求此抛物线的函数关系式和顶点D的坐标;
(2)求直线AC所对应的函数关系式;
(3)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;
(4)在(3)的结论下,新抛物线y1上是否存在点Q,使得△QAB是以AB为底边的等腰三角形,请分析所有可能出现的情况,并直接写出相对应的m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.将一张边长为2的正方形纸片按照图①-④的过界折叠后再展开,则四边形AMCN的面积为4$\sqrt{2}$-4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.(-$\frac{2}{3}$)2015•($\frac{3}{2}$)2016=-$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图是一个三棱柱包装盒,它的底面是边长为8的正三角形,三个侧面都是矩形,现将宽为12cm的矩形纸带ABCD裁剪成一个平行四边形AECF,然后用这条平行四边形纸带把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.
(1)求出图中∠EAF的度数;
(2)计算包贴这个三棱柱包装盒所需的矩形纸带的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知方程组$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=6}\\{y=8}\end{array}\right.$,则方程组$\left\{\begin{array}{l}{3{a}_{1}x+4{b}_{1}y=5{c}_{1}}\\{3{a}_{2}x+4{b}_{2}y=5{c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=10}\\{y=10}\end{array}\right.$.

查看答案和解析>>

同步练习册答案