精英家教网 > 初中数学 > 题目详情

【题目】如图,将在Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,连接BE,延长DE、BC相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.

(1)判断△ABE的形状,并证明你的结论;

(2)用含b代数式表示四边形ABFE的面积;

(3)求证:a2+b2=c2

【答案】(1)△ABE是等腰直角三角形,证明详见解析;(2)b 2;(3)详见解析.

【解析】

(1)利用旋转的性质得出∠BAE=∠BAC+∠CAE=∠CAE+∠DAE=90°,AB=AE,即可得出△ABE的形状;(2)利用四边形ABFE的面积等于正方形ACFD面积,即可得出答案;(3)利用正方形ACFD面积等于Rt△BAERt△BFE的面积之和进而证明即可.

(1)△ABE是等腰直角三角形,

证明:∵Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,

∴∠BAC=∠DAE,

∴∠BAE=∠BAC+∠CAE=∠CAE+∠DAE=90°,

∵AB=AE,

∴△ABE是等腰直角三角形;

(2)∵四边形ABFE的面积等于正方形ACFD面积,

四边形ABFE的面积等于:b 2

(3)∵S正方形ACFD=SBAE+SBFE

即:b2=c2+(b+a)(b﹣a),

整理:2b2=c2+(b+a)(b﹣a)

∴a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一抛物线与x轴的交点是A(﹣2,0)、B(1,0),且经过点C(2,8).
(1)求该抛物线的解析式;
(2)求该抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选定点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,∠A=80°,∠B、∠C的平分线的夹角是(

A. 130° B. 60° C. 130°或50° D. 60°或120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP,BP,CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DEAB,过点EEFDE,交BC的延长线于点F.

(1)求证:△CEF是等腰三角形;

(2)若CD=2,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】是否存在整数m,使关于x的不等式1++与关于x的不等式x+1> 的解集相同?若存在,求出整数m和不等式的解集;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0)、
(1)填空:抛物线的对称轴为直线x= , 抛物线与x轴的另一个交点D的坐标为
(2)求该抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O△ABC的三条边所得的弦长相等,则下列说法正确的是(
A.点O是△ABC的内心
B.点O是△ABC的外心
C.△ABC是正三角形
D.△ABC是等腰三角形

查看答案和解析>>

同步练习册答案