精英家教网 > 初中数学 > 题目详情

【题目】△ABC是一张等腰直角三角形纸板,∠C=Rt∠AC=BC=2

1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.

2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s1;按照甲种剪法,在余下的△ADE△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2),则s2=;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s3,继续操作下去,则第10次剪取时,s10=

3)求第10次剪取后,余下的所有小三角形的面积之和.

【答案】解:(1)解法1:如图甲,由题意,得AE=DE=EC,即EC=1S正方形CFDE=12=1

如图乙,设MN=x,则由题意,得AM=MQ=PN=NB=MN=x

解得

甲种剪法所得的正方形面积更大.

说明:图甲可另解为:由题意得点DEF分别为ABACBC的中点,S正方形OFDE=1

解法2:如图甲,由题意得AE=DE=EC,即EC=1

如图乙,设MN=x,则由题意得AM=MQ=QP=PN=NB=MN=x

解得

,即ECMN

甲种剪法所得的正方形面积更大.

2

3)解法1:探索规律可知:

剩余三角形面积和为=

解法2:由题意可知,

第一次剪取后剩余三角形面积和为2﹣S1=1=S1

第二次剪取后剩余三角形面积和为

第三次剪取后剩余三角形面积和为

第十次剪取后剩余三角形面积和为

【解析】

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB3cm,以B为圆心,1cm长为半径画⊙B,点P在⊙B上移动,连接AP,并将AP绕点A逆时针旋转90°至AP′,连接BP′.在点P移动的过程中,BP′长度的最小值为_____cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系xOy中,直线yaxm+k称为抛物线yaxm2+k的关联直线.

1)求抛物线yx2+6x1的关联直线;

2)已知抛物线yax2+bx+c与它的关联直线y2x+3都经过y轴上同一点,求这条抛物线的表达式;

3)如图,顶点在第一象限的抛物线y=﹣ax12+4a与它的关联直线交于点AB(点A在点B的左侧),与x轴负半轴交于点C,连结ACBC.当ABC为直角三角形时,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P点是某海域内的一座灯塔的位置,船A停泊在灯塔P的南偏东53°方向的50海里处,船B位于船A的正西方向且与灯塔P相距20海里.(本题参考数据sin53°≈0.80cos53°≈0.60tan53°≈1.33)

(1)试问船B在灯塔P的什么方向?

(2)求两船相距多少海里?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)x2+6x20(配方法)

(2)已知关于x的方程2x2+(k2)x+10有两个相等的实数根,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个腰长为4cm,底边长为3cm的等腰三角形,现在要利用这个等腰三角形加工出一个边长比是1:2的平行四边形,使平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其他顶点均在三角形的边上,则这个平行四边形的较短的边长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在RtABC中,∠C90°,AC8cmBC6cm,点PB出发沿BA方向向点A匀速运动,速度为1cm/s;点QA出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为ts)(0t4),解答下列问题:

1)当t为何值时,PQBC

2)设△AQP的面积为ycm2),求yt之间的函数关系式;

3)是否存在某一时刻t,使线段PQ恰好把RtACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;

4)如图,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,那么是否存在某一时刻t,使四边形PQPC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点BF的坐标分别为(4,4)(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(PGC)是位似中心,则点P的坐标为(  )

A. (0,3)

B. (0,2.5)

C. (0,2)

D. (0,1.5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD的对角线相交于点O点E在边BC的延长线上且OE=OB连接DE

1求证:DEBE;

2如果OECD求证:BD·CE=CD·DE

查看答案和解析>>

同步练习册答案