精英家教网 > 初中数学 > 题目详情

当n〉m〉0时,则化为最简二次根式是

[  ]

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料,解答下列问题.
例:当a>0时,如a=6,则|a|=|6|=6,故此时|a|是它本身;当a=0时,|a|=0,故此时|a|是零;
当a<0时,如a=-6,则|a|=|-6|=6=-(-6),故此时|a|是它的相反数.
综上所述,|a|可分三种情况,即|a|=
a(a>0)
0(a=0)
-a(a<0)

这种分析方法渗透了数学的分类讨论思想.
问:(1)请仿照例中的分类讨论的方法,分析二次根式
a2
的各种展开的情况.
(2)猜想
a2
与|a|的大小关系是
a2
 
|a|.
(3)当1<x<2时,试化简:|x-1|+
(x-2)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料,解答下列问题.
例:当a>0时,如a=6,则|a|=|6|=6,故此时|a|是它本身;当a=0时,|a|=0,故此时|a|是零;
当a<0时,如a=-6,则|a|=|-6|=6=-(-6),故此时|a|是它的相反数.
综上所述,|a|可分三种情况,即|a|=数学公式
这种分析方法渗透了数学的分类讨论思想.
问:(1)请仿照例中的分类讨论的方法,分析二次根式数学公式的各种展开的情况.
(2)猜想数学公式与|a|的大小关系是数学公式______|a|.
(3)当1<x<2时,试化简:数学公式

查看答案和解析>>

科目:初中数学 来源:2011年广东省中考数学模拟试卷(解析版) 题型:解答题

阅读材料,解答下列问题.
例:当a>0时,如a=6,则|a|=|6|=6,故此时|a|是它本身;当a=0时,|a|=0,故此时|a|是零;
当a<0时,如a=-6,则|a|=|-6|=6=-(-6),故此时|a|是它的相反数.
综上所述,|a|可分三种情况,即|a|=
这种分析方法渗透了数学的分类讨论思想.
问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.
(2)猜想与|a|的大小关系是______|a|.
(3)当1<x<2时,试化简:

查看答案和解析>>

科目:初中数学 来源:2011年广东省初中毕业生学业考试数学试卷(解析版) 题型:解答题

阅读材料,解答下列问题.
例:当a>0时,如a=6,则|a|=|6|=6,故此时|a|是它本身;当a=0时,|a|=0,故此时|a|是零;
当a<0时,如a=-6,则|a|=|-6|=6=-(-6),故此时|a|是它的相反数.
综上所述,|a|可分三种情况,即|a|=
这种分析方法渗透了数学的分类讨论思想.
问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.
(2)猜想与|a|的大小关系是______|a|.
(3)当1<x<2时,试化简:

查看答案和解析>>

科目:初中数学 来源:2010年广东省中考数学模拟试卷(解析版) 题型:解答题

(2011•广东模拟)阅读材料,解答下列问题.
例:当a>0时,如a=6,则|a|=|6|=6,故此时|a|是它本身;当a=0时,|a|=0,故此时|a|是零;
当a<0时,如a=-6,则|a|=|-6|=6=-(-6),故此时|a|是它的相反数.
综上所述,|a|可分三种情况,即|a|=
这种分析方法渗透了数学的分类讨论思想.
问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况.
(2)猜想与|a|的大小关系是______|a|.
(3)当1<x<2时,试化简:

查看答案和解析>>

同步练习册答案