精英家教网 > 初中数学 > 题目详情

【题目】(12分)在等腰△ABC中,AB=AC=2, ∠BAC=120°,AD⊥BC于D,点O、点P分别在射线AD、BA上的运动,且保证∠OCP=60°,连接OP.

(1)当点O运动到D点时,如图一,此时AP=______,△OPC是什么三角形。

(2)当点O在射线AD其它地方运动时,△OPC还满足(1)的结论吗?请用利用图二说明理由。

(3)令AO=x,AP=y,请直接写出y关于x的函数表达式,以及x的取值范围。

图一 图二

【答案】(1)1,等边三角形;(2)理由见解析;(3)当时,y=2-x;当时,

y=x-2

【解析】试题分析:(1)根据等腰三角形的性质得到∠B=∠ACB=30°,求得∠ACP=30°,根据全等三角形的性质即可得到结论;(2)过C作CE⊥AP于E,根据等边三角形的性质得到CD=CE,根据全等三角形的性质得到OC=OP,由等边三角形的判定即可得到结论;(3)分两种情况解决,在AB上找到Q点使得AQ=OA,则△AOQ为等边三角形,根据求得解实现的性质得到PA=BQ,求得AC=AO+AP,即可得到结论.

试题解析:

(1)AD=AP=1,

∵AB=AC=2,∠BAC=120°,

∴∠B=∠ACB=30°,

∵∠OCP=60°,

∴∠ACP=30°,

∵∠CAP=180°﹣∠BAC=60°,

∵AD⊥BC,

∴∠DAC=60°,

在△ADC与△APC中,

∴△ACD≌△ACP,

∴CD=CP,

∴△PCO是等边三角形;

(2)△OPC还满足(1)的结论,

理由:过C作CE⊥AP于E,

∵∠CAD=∠EAC=60°,

AD⊥CD,

∴CD=CE,

∴∠DCE=60°,

∴∠OCE=∠PCE,

在△OCD与△PCE中,

∴△OCD≌△PCE,

∴OC=OP,

∴△OPC是等边三角形;

(3)当0<x≤2时,

在AB上找到Q点使得AQ=OA,则△AOQ为等边三角形,

则∠BQO=∠PAO=120°,

在△BQO和△PAO中,

∴△BQO≌△PAO(AAS),

∴PA=BQ,

∵AB=BQ+AQ,

∴AC=AO+AP,

∵AO=x,AP=y,

∴y=﹣x+2;

时, 利用同样的方法可求得y=x-2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个长80cm,宽70cm的矩形铁皮,将四个角各剪去一个边长为xcm的小正方形后,剩余部分刚好围成一个底面积为3000cm2的无盖长方体盒子,求小正方形边长xcm时,可根据下列方程(  )

A. (80x)(70x)3000 B. (802x)(702x)3000

C. 80×704x23000 D. 80×704x2(80+70)x3000

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简:﹣3(x2+2xy)+6(x2﹣xy)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果收入50元,记作+50元,那么支出30元记作(
A.+30元
B.﹣30元
C.+80元
D.﹣80元

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016宁夏第23题)已知ABC,以AB为直径的O分别交AC于D,BC于E,连接ED,若ED=EC.

(1)求证:AB=AC;

(2)若AB=4,BC=2,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我县果菜大王王大炮收货番茄20吨,青椒12吨.现计划租用甲、乙两种货车共8辆将这批果菜全部运往外地销售,已知一辆甲种货车可装番茄4吨和青椒1吨,一辆乙种货车可装番茄和青椒各2吨.

1)王灿有几种方案安排甲、乙两种货车可一次性地将果菜运到销售地?

2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王大炮应选择哪种方案,使运输费最少?最少运费是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】0°<∠A45°,那么sinAcosA的值(  )

A. 大于0 B. 小于0 C. 等于0 D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )

A.所有命题都是定理

B.三角形的一个外角大于它的任一内角

C.三角形的外角和等于180°

D.公理和定理都是真命题

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校为了奖励初三优秀毕业生计划购买一批平板电脑和一批学习机经投标购买1台平板电脑3 000购买1台学习机800.

(1)学校根据实际情况决定购买平板电脑和学习机共100要求购买的总费用不超过168 000则购买平板电脑最多多少台?

(2)(1)的条件下购买学习机的台数不超过平板电脑台数的1.7.请问有哪几种购买方案?哪种方案最省钱?

查看答案和解析>>

同步练习册答案