精英家教网 > 初中数学 > 题目详情
14.如图,在平面直角坐标系中,点A为(5,0),点B为(-5,0),点C为(3,-4),点D为第一象限上的一个动点,且OD=5.
①∠ACB=90度;
②若∠AOD=50°,则∠ACD=25度.

分析 ①利用勾股定理结合A、B、C三点坐标可得BC、AB、AC的长,再利用勾股定理逆定理可证出∠ACB=90°;
②首先连接OC,利用勾股定理计算出CO的长,进而可得B、C、D都在以O为圆心,半径为5的圆上,再根据圆周角定理可得∠ACD的度数.

解答 解:①∵点A为(5,0),点B为(-5,0),点C为(3,-4),
∴AB=10,BC=$\sqrt{{8}^{2}+{4}^{2}}$=$\sqrt{80}$=4$\sqrt{5}$,AC=$\sqrt{{2}^{2}+{4}^{2}}$=$\sqrt{20}$=2$\sqrt{5}$,
∵(4$\sqrt{5}$)2+(2$\sqrt{5}$)2=102
∴BC2+AC2=AB2
∴∠ACB=90°,
故答案为:90;

②连接OC,
∵点C为(3,-4),
∴CO=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∵OD=5,
∴B、C、D都在以O为圆心,半径为5的圆上,
∵∠AOD=50°,
∴∠ACD=25°,
故答案为:25°.

点评 此题主要考查了勾股定理逆定理,以及圆周角定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是$\widehat{EB}$的中点,则下列结论成立的是①②③(将正确番号填入)
①OC∥AE ②EC=BC ③∠DAE=∠ABE ④AC⊥OE.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,给出线段a、h,作等腰三角形ABC,使AB=AC=a,BC边上的高AD=h.张红的作法是:(1)作线段AD=h;(2)作线段AD的垂线MN;(3)以点A为圆心,a为半径作弧,与MN分别交于点B、C;(4)连接AB、AC、△ABC为所求作的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是(  )
A.(1)B.(2)C.(3)D.(4)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.请先观察下列算式,再填空:32-12=8×1,52-32=8×2,72-52=8×3,92-72=8×4,…,通过观察归纳,写出反映这种规律的一般结论:(2n+1)2-(2n-1)2=8n.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图所示,点E是矩形ABCD的边AB上任意一点,过点D作DF⊥DE交BC的延长线于点F,DE=DF.求证:矩形ABCD是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读下列材料,解答下列问题:
材料1.把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式.如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程.
公式法(平方差公式、完全平方公式)是因式分解的一种基本方法.如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式.但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:
x2+2ax-3a2
=x2+2ax+a2-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a)
材料2.因式分解:(x+y)2+2(x+y)+1
解:将“x+y”看成一个整体,令x+y=A,则
原式=A2+2A+1=(A+1)2
再将“A”还原,得:原式=(x+y+1)2
上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:
(1)根据材料1,把c2-6c+8分解因式;
(2)结合材料1和材料2完成下面小题:
①分解因式:(a-b)2+2(a-b)+1;
②分解因式:(m+n)(m+n-4)+3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图是“明清影视城”的圆弧形门,这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20cm,BD=200cm,且AB,CD与水平地面都是垂直的.则这个圆弧形门的最高点离地面的高度是520 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.阅读材料:若m2-2mn+2n2-2n+1=0,求m、n的值.
解:∵m2-2mn+2n2-2n+1=0,∴(m2-2mn+n2)+(n2-2n+1)=0
∴(m-n)2+(n-1)2=0,∴(m-n)2=0,(n-1)2=0,∴n=1,m=1.
根据你的观察,探究下面的问题:
(1)已知x2+2xy+2y2+2y+1=0,求x、y的值;
(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b-52,且△ABC是等腰三角形,求c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A的坐标为(2,0),点D的坐标为(0,4).延长CB交x轴于点A1,作第二个正方形A1B1C1C;延长C1B1交x轴于点A2,作第三个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积为(  )
A.20×($\frac{3}{2}$)4030B.20×($\frac{3}{2}$)4032C.20×($\frac{3}{2}$)2016D.20×($\frac{3}{2}$)2015

查看答案和解析>>

同步练习册答案