精英家教网 > 初中数学 > 题目详情
精英家教网把两个含有45°角的直角三角板如图放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.试判断AF和BE的位置关系,并说明理由.
分析:先得出结论AF⊥BE,再根据题意利用SAS可证明∴△BEC≌△ADC,则∠EBC=∠DAC,由∠FDB=∠CDA是对顶角相等,∠BFD=∠ACD=90°即AF⊥BE.
解答:解:AF⊥BE,理由如下(1分)
∵△ECD和△BCA都是等腰Rt△,
∴EC=DC,BC=AC,
∠ECD=∠ACB=90°,(2分)
在△BEC和△ADC中,
EC=DC
∠ECB=∠DCA
BC=AC

∴△BEC≌△ADC(SAS),(5分)
∴∠EBC=∠DAC,(6分)
∵∠DAC+∠CDA=90°,
∠FDB=∠CDA,
∴∠EBC+∠FDB=90°,
∴∠BFD=90°,
即AF⊥BE.(8分)
点评:本题考查了全等三角形的判定和性质,垂直的定义,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、把两个含有45°角的大小不同的直角三角板如图放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.
说明:AF⊥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)把两个含有45°角的直角三角板如图1放置,点D在BC上,连接BE,AD,AD的延长线交BE于点F.求证:AF⊥BE.
(2)把两个含有30°角的直角三角板如图2放置,点精英家教网D在BC上,连接BE,AD,AD的延长线交BE于点F.问AF与BE是否垂直?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

把两个含有45°角的直角三角板如图1放置,点D在BC上,连接BE、AD,AD的延长线交于BE于点F.
(1)问:AD与BE在数量上和位置上分别有何关系?说明理由.
(2)若将45°角换成30°如图2,AD与BE在数量和位置上分别有何关系?说明理由.
(3)若将图2中两个三角板旋转成图3、图4、图5的位置,则(2)中结论是否仍然成立,选择其中一种图形进行说明.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

26、把两个含有45°角的直角三角板如图放置,点D在AC上,连接AE、BD,试判断AE与BD的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

把两个含有45°角的直角三角板如图放置,D在BC点上,连接BD、AD,AD的延长线交BE于点F,求证:AF⊥BE.

查看答案和解析>>

同步练习册答案