【题目】在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.
(1)求证:△ADE≌△CBF;
(2)若DF=BF,试判定四边形DEBF是何种特殊四边形?并说明理由.
【答案】(1)证明见解析;(2)四边形DEBF是菱形.理由见解析
【解析】
(1)通过“平行四边形的对边相等、对角相等”的性质推知AD=BC,且∠A=∠C,结合已知条件,利用全等三角形的判定定理SAS证得结论;
(2)首先判定四边形DEBF是平行四边形,然后根据“邻边相等的平行四边形是菱形”推知四边形DEBF是菱形.
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,∠A=∠C.
∵在△ADE与△CBF中,
,
∴△ADE≌△CBF(SAS);
(2)四边形DEBF是菱形.理由如下:
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵AE=CF,
∴DF=EB,
∴四边形DEBF是平行四边形.
又∵DF=BF,
∴平行四边形DEBF是菱形.
科目:初中数学 来源: 题型:
【题目】已知直线y=﹣x+7a+1与直线y=2x﹣2a+4同时经过点P,点Q是以M(0,﹣1)为圆心,MO为半径的圆上的一个动点,则线段PQ的最小值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业对一种设备进行升级改造,并在一定时间内进行生产营销,设改造设备的台数为x,现有甲、乙两种改造方案.
甲方案:升级后每台设备的生产营销利润为4000元,但改造支出费用由材料费和施工费以及其他费用三部分组成,其中材料费与x的平方成正比,施工费与x成正比,其他费用为2500元,(利润=生产营销利润-改造支出费用).设甲方案的利润为(元),经过统计,得到如下数据:
改造设备台数x(台) | 20 | 40 |
利润(元) | 9500 | 5500 |
乙方案:升级后每台设备的生产营销利润为3500元,但改造支出费用与x之间满足函数关系式:(a为常数,),且在使用过程中一共还需支出维护费用,(利润=生产营销利润-改造支出费用-维护费用).设乙方案的利润为(元).
(1)分别求出,与x的函数关系式;
(2)若,的最大值相等,求a的值;
(3)如果要将30台设备升级改造,请你帮助决策,该企业应选哪种方案,所获得的利润较大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若,则=__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(探究)
(1)观察下列算式,并完成填空:
1=12
1+3=4=22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+…+(2n-1)=______.(n是正整数)
(2)如图是某市一广场用正六边形、正方形和正三角形地板砖铺设的图案,图案中央是一块正六边形地板砖,周围是正方形和正三角形的地板砖.从里向外第一层包括6块正方形和6块正三角形地板砖;第二层包括6块正方形和18块正三角形地板砖;以此递推.
①第3层中分别含有______块正方形和______块正三角形地板砖;
②第n层中含有______块正三角形地板砖(用含n的代数式表示).
(应用)
该市打算在一个新建广场中央,采用如图样式的图案铺设地面,现有1块正六边形、150块正方形和420块正三角形地板砖,问:铺设这样的图案,最多能铺多少层?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+mx+n与x轴相交于点A、B两点,过点B的直线y=x+b交抛物线于另一点C(-5,6),点D是线段BC上的一个动点(点D与点B、C不重合),作DE∥AC,交该抛物线于点E,
(1)求m,n,b的值;
(2)求tan∠ACB;
(3)探究在点D运动过程中,是否存在∠DEA=45°,若存在,则求此时线段AE的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于两个点,和图形,如果在图形上存在点,(,可以重合)使得,那么称点与点是图形的一对平衡点.
(1)如图1,已知点,;
①设点与线段上一点的距离为,则的最小值是 ,最大值是 ;
②在,,这三个点中,与点是线段的一对平衡点的是 ;
(2)如图2,已知的半径为1,点的坐标为
(3)如图3,已知点,以点为圆心,长为半径画弧交的正半轴于点.点(其中)是坐标平面内一个动点,且,是以点为圆心,半径为2的圆,若上的任意两个点都是的一对平衡点,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠ABC=45°,AB=4,BC=9,直线MN平分平行四边形ABCD的面积,分别交边AD、BC于点M、N,若△BMN是以MN为腰的等腰三角形,则BN=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=10,BC=15,点D,E,P分别是边AC,AB;BC上的点,且AD=4,AE=4EB.若 是等腰三角形,则CP的长是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com