£¨¹Û²ìÏÂÁеÈʽ£º
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬ÒÔÉÏÈý¸öµÈʽÁ½±ß·Ö±ðÏà¼ÓµÃ£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4
£®
£¨1£©²ÂÏ벢д³ö£º
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
£®
£¨2£©Ö±½Óд³öÏÂÁи÷ʽµÄ¼ÆËã½á¹û£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
49¡Á50
=
49
50
49
50
£»
£¨3£©¼ÆË㣺
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
2007¡Á2009
£®
·ÖÎö£º£¨1£©·Ö×ÓΪ1£¬·ÖĸΪÏàÁÚ2¸öÊýµÄ»ý£¬½á¹ûµÈÓÚ·Ö×ÓΪ1£¬·Öĸ·Ö±ðΪ2¸öÒòÊýµÄ·ÖÊýµÄ²î£»
£¨2£©»¯¼òºó£¬Ö»Ê£Ê×βÁ½¸öÊý£¬Ïà¼õ¼´¿É£»
£¨3£©·Ö×ÓΪ1£¬·ÖĸΪÏà²î2µÄ2¸öÊýµÄ»ý£¬½á¹ûµÈÓÚ·Ö×ÓΪ1£¬·Öĸ·Ö±ðΪ2¸öÒòÊýµÄ·ÖÊýµÄ²î£¬ÔÙ³ËÒÔ
1
2
£¬½ø¶ø°´ÕÕ£¨2£©µÃµ½µÄ¹æÂÉ£¬¼ÆËã¼´¿É£»
½â´ð£º½â£º£¨1£©
1
n(n+1)
=
1
n
-
1
n+1
£»
¹Ê´ð°¸Îª
1
n
-
1
n+1
£»

£¨2£©Ô­Ê½=1-
1
50
=
49
50
£»
¹Ê´ð°¸Îª
49
50
£»

£¨3£©Ô­Ê½=£¨1-
1
3
+
1
3
-
1
5
+¡­+
1
2007
-
1
2009
£©¡Á
1
2

=£¨1-
1
2009
£©¡Á
1
2
=
2008
2009
¡Á
1
2

=
1004
2009
£®
µãÆÀ£º¿¼²éÊý×ֵı仯¹æÂÉ£»µÃµ½·Ö×ÓΪ1£¬·ÖĸΪµÈ²îÊýÁеļ¸¸ö·ÖÊýµÄºÍµÄ¼ÆËã·½·¨Êǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹Û²ìÏÂÁеÈʽ£º
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬½«ÒÔÉÏÈý¸öµÈʽÁ½±ß·Ö±ðÏà¼ÓµÃ£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

£¨1£©²ÂÏ벢д³ö£º
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
£»
£¨2£©¼ÆË㣺
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+
¡­+
1
n(n+1)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹Û²ìÏÂÁеÈʽ£º
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬
°ÑÒÔÉÏÈý¸öµÈʽÁ½±ß·Ö±ðÏà¼ÓµÃ£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4
£®
£¨1£©²ÂÏ벢д³ö£º
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
£®
£¨2£©Ö±½Óд³öÏÂÁи÷ʽµÄ¼ÆËã½á¹û£º
¢Ù
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2008¡Á2009
=
2008
2009
2008
2009
£»
¢Ú
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
n(n+1)
=
n
n+1
n
n+1
£®
£¨3£©Ì½¾¿²¢¼ÆË㣺
1
2¡Á4
+
1
4¡Á6
+
1
6¡Á8
+¡­+
1
2006¡Á2008
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸½¼ÓÌ⣺
£¨1£©ÒÑÖª|a-2|+|b+6|=0£¬Ôòa+b=
-4
-4
£®
£¨2£©¹Û²ìÏÂÁеÈʽ£º
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬½«ÒÔÉÏÈý¸öµÈʽÏà¼ÓµÃ£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4
£®
¢Ù²ÂÏ벢д³ö£º
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
£®
¢ÚÖ±½Óд³ö½á¹û£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2006¡Á2007
=
2006
2007
2006
2007
£®
£¨3£©ÔÚÊýÖáÉÏÓÐÁ½µã£¬ËüÃǵ½Ô­µãµÄ¾àÀë·Ö±ðÊÇ2ºÍ3£¬ÎÊÕâÁ½µãÖ®¼äµÄ¾àÀëÊǶàÉÙ£¿
£¨4£©Çó|
1
2
-1|+|
1
3
-
1
2
|+¡­+|
1
99
-
1
98
|+|
1
100
-
1
99
|µÄÖµ£®
£¨5£©ÈçͼËùʾ£¬ÊýÖáÉÏÓÐËĵãA£¬B£¬C£¬D·Ö±ð±íʾÓÐÀíÊýa£¬b£¬c£¬d£¬Óá°£¼¡±°Ñ±íʾa£¬b£¬c£¬d£¬|a|£¬|b|£¬-|c|£¬-|d|µÄÊýÁ¬½ÓÆðÀ´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹Û²ìÏÂÁеÈʽ£º
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬½«ÒÔÉÏÈý¸öµÈʽÏà¼ÓµÃ£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4
£®
£¨1£©²ÂÏ벢д³ö£º
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
£®
£¨2£©Ö±½Óд³ö½á¹û£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2006¡Á2007
=
2006
2007
2006
2007
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹Û²ìÏÂÁеÈʽ£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4
£®
£¨1£©Ö±½Óд³öÏÂÁи÷ʽµÄ¼ÆËã½á¹û£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2006¡Á2007
=
2006
2007
2006
2007
£»
£¨2£©Ì½¾¿²¢¼ÆË㣺
1
2¡Á4
+
1
4¡Á6
+
1
6¡Á8
+¡­+
1
2006¡Á2008
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸