精英家教网 > 初中数学 > 题目详情
如图,等腰梯形 ABCD中,AB∥DC,BD平分∠ABC,∠DAB=60°,若梯形周长为40cm,则AD=      
8cm  

试题分析:解:因为等腰梯形ABCD中,∠CBA=∠DAB=60°因为BD平分∠ABC,
∴∠ABD=∠DBC=30°,
因为AB∥DC∴∠CBD=∠CDB=30°,所以CD=CB。
∠C+∠CBA=180°,所以∠C=120°。则∠CDA=∠C=120°。∠ADB=120°-∠CDB=90°。
所以BD⊥CD,且∠DBA=30°
∴BC=2CD,所以梯形ABCD周长=CD+AD+BC+AB=5AD
所以5AD=40,
∴AD=8cm
点评:此题主要考查学生对等腰梯形的性质的理解及运用.根据已知可推出BC=2CD,根据周长公式可求得腰长及高的长,再根据面积公式即可求得其面积.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

有一块等腰梯形开关的土地,现要平均分给两个农户种植(既将梯形的面积两等分),试设计两种方案。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是平行四边形,AB=2,以边AB为直径的⊙O经过点D,且∠DAB=45°.
 
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若以C为圆心的⊙C与⊙O 相切,求⊙C的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,矩形ABCD,AB = 4,∠ACB = 30°.点E从点C出发,沿折线CA—AD以每秒一个单位长度的速度运动,过点E作EF∥CD交BC于点F,同时过点E作EG⊥AC交直线BC于点G,设运动的时间为t,△EFG与△ABC重叠部分的面积为S,当点E运动到点D时停止运动.

(1)当点B与点G重合时,求此时t的值;
(2)直接写出S与t之间的函数关系式和相应的自变量取值范围;
(3)当t = 4时,将△EFG绕点E顺时针旋转一个角度),∠GEF的两边分别交矩形的边于点M,点N.当△MEN为等腰三角形时,求此时△MEN的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

18如图①,在梯形ABCD中,ADBC,∠A=60°,动点P从点A出发,以1cm/s的速度沿着ABCD的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则线段CD的长度为       cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在梯形ABCD中,AB∥CD.

(1)用尺规作图的方法,作∠的角平分线AF和梯形的高BG(保留作图痕迹,不写作法和证明);
(2)若AF 交CD 边交于点E,判断△ADE 的形状(只写结果)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,□ABCD的面积为6,E为BC中点,DE、AC交于F点,的面积为      

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是平行四边形,对角线AC、BD交于点O,过点O画直线EF分别交AD、BC于点E、F。求证:OE=OF

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

折叠矩形ABCD的一边AD, 折痕为AE, 且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。求点F和点E坐标。

查看答案和解析>>

同步练习册答案