精英家教网 > 初中数学 > 题目详情
如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.精英家教网
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?
分析:根据抛物线在坐标系的位置,设抛物线的解析式为y=ax2,设D、B的坐标求解析式;
解答:解:(1)设抛物线的解析式为y=ax2(a不等于0),桥拱最高点O到水面CD的距离为h米.
则D(5,-h),B(10,-h-3)
25a=-h
100a=-h-3

解得
a=-
1
25
h=1

∴抛物线的解析式为y=-
1
25
x2

(2)水位由CD处涨到点O的时间为:1÷0.25=4(小时)
货车按原来速度行驶的路程为:40×1+40×4=200<280
∴货车按原来速度行驶不能安全通过此桥.
设货车速度提高到x千米/时
当4x+40×1=280时,x=60
∴要使货车安全通过此桥,货车的速度应超过60千米/时.
点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,有一座抛物线形的拱桥,桥下的正常水位为OA,此时水面宽为40米,水面离桥的最大高度为16米,则拱桥所在的抛物线的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有一座抛物线形的拱桥,桥下面处在目前的水位时,水面宽AB=10m,如果水位上升2m,就将达到警戒线CD,这时水面的宽为8m.若洪水到来,水位以每小时0.1m速度上升,经过多少小时会达到拱顶?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位精英家教网上升3米,则水面CD的宽是10米.
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是1精英家教网0m.建立如图所示的直角坐标系,则此抛物线的解析式为
 

查看答案和解析>>

同步练习册答案