精英家教网 > 初中数学 > 题目详情
有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1-x2|的结果.比如依次输入1,2,则输出的结果是|1-2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.
(1)若小明依次输入3,4,5,则最后输出的结果是______;
(2)若小明将1到2011这2011个整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m,则m的最大值为______;
(3)若小明将1到n(n≥3)这n个正整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m.探究m的最小值和最大值.
(1)根据题意可以得出:||3-4|-5|=|1-5|=4;      
故答案为:4.
          
(2)由于输入的数都是非负数.当x1≥0,x2≥0时,|x1-x2|不超过x1,x2中最大的数.
对x1≥0,x2≥0,x3≥0,则||x1-x2|-x3|不超过x1,x2,x3中最大的数.
小明输入这2011个数设次序是x1,x2,x2011
相当于计算:||||x1-x2|-x3|-x2011|-x2011|=P.因此P的值≤2011.
另外从运算奇偶性分析,x1,x2为整数.
|x1-x2|与x1+x2奇偶性相同.因此P与x1+x2+…+x2011的奇偶性相同.
但x1+x2+…+x2011=1+2+2011=偶数.于是断定P≤2010.我们证明P可以取到2010.
对1,2,3,4,按如下次序|||1-3|-4|-2|=0.
|||(4k+1)-(4k+3)|(4k+4)|-(4k+2)=|0,对k=0,1,2,均成立.
因此,1-2009可按上述办法依次输入最后显示结果为0.而后||2009-2010|-2011|=2010.
所以P的最大值为2010.
故答案为:2010;        
      
(3)对于任意两个正整数x1,x2,|x1-x2|一定不超过x1和x2中较大的一个,对于任意三个正整数x1,x2,x3
||x1-x2|-x3|一定不超过x1,x2和x3中最大的一个,
以此类推,设小明输入的n个数的顺序为x1,x2,…xn,则m=|||…|x1-x2|-x3|-…|-xn|,
m一定不超过x1,x2,…xn,中的最大数,所以0≤m≤n,易知m与1+2+…+n的奇偶性相同;
1,2,3可以通过这种方式得到0:||3-2|-1|=0;
任意四个连续的正整数可以通过这种方式得到0:|||a-(a+1)|-(a+3)|-(a+2)|=0(*);
下面根据前面分析的奇偶性进行构造,其中k为非负整数,连续四个正整数结合指的是按(*)式结构计算.
当n=4k时,1+2+…+n为偶数,则m为偶数,连续四个正整数结合可得到0,则最小值为0,前三个结合得到0,接下来连续四个结合得到0,仅剩下n,则最大值为n;
当n=4k+1时,1+2+…+n为奇数,则m为奇数,除1外,连续四个正整数结合得到0,则最小值为1,从1开始连续四个正整数结合得到0,仅剩下n,则最大值为n;
当n=4k+2时,1+2+…+n为奇数,则m为奇数,从1开始连续四个正整数结合得到0,仅剩下n和n-1,
则最小值为1,
从2开始连续四个正整数结合得到0,仅剩下1和n,最大值为n-1;
当n=4k+3时,1+2+…+n为偶数,则m为偶数,前三个结合得到0,接下来连续四个正整数结合得到0,
则最小值为0,从3开始连续四个正整数结合得到0,仅剩下1,2和n,
则最大值为n-1.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1-x2|的结果.比如依次输入1,2,则输出的结果是|1-2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.
(1)若小明依次输入3,4,5,则最后输出的结果是
4
4

(2)若小明将1到2011这2011个整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m,则m的最大值为
2010
2010

(3)若小明将1到n(n≥3)这n个正整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m.探究m的最小值和最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数,只显示不运算,接着再输入整数后则显示的结果.比如依次输入1,2,则输出的结果是=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.

(1)若小明依次输入3,4,5,则最后输出的结果是_______;

(2)若小明将1到2011这2011个整数随意地一个一个的输入,全部输入完毕后显示的

最后结果设为m,则m的最大值为_______

(3)若小明将1到nn≥3)这n个正整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m. 探究m的最小值和最大值.

查看答案和解析>>

同步练习册答案