精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,已知抛物线 (b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,–1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求b,c的值;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与直线AC交于另一点Q.
①点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M,P,Q三点为顶点的三角形是以PQ为腰的等腰直角三角形时,求点M的坐标;
②取BC的中点N,连接NP,BQ.当取最大值时,点Q的坐标为________.
(1);(2)①(4,﹣1),(﹣2,﹣7);②.

试题分析:(1)先求出点B的坐标,然后利用待定系数法求即可求得b,c的值.
(2)①首先求出直线AC的解析式和线段PQ的长度,作为后续计算的基础,当以M,P,Q三点为顶点的三角形是以PQ为腰的等腰直角三角形时,点M到PQ的距离为.此时,将直线AC向右平移4个单位后所得直线(y=x-5)与抛物线的交点,即为所求之M点.
②由①可知,PQ=为定值,因此当NP+BQ取最小值时,有最大值.如答图2所示,作点B关于直线AC的对称点B′,由分析可知,当B′、Q、F(AB中点)三点共线时,NP+BQ最小,进而求出点Q的坐标.
试题解析:(1)由题意,得点B的坐标为(4,﹣1).
∵抛物线过A(0,﹣1),B(4,﹣1)两点,
,解得.
(2)①由(1)得抛物线的函数表达式为:.
∵A(0,﹣1),C(4,3),∴直线AC的解析式为:y=x﹣1.
设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上.
∵点P在直线AC上滑动,∴可设P的坐标为(m,m﹣1).
则平移后抛物线的函数表达式为:.
解方程组:,解得.
∴P(m,m﹣1),Q(m﹣2,m﹣3).
过点P作PE∥x轴,过点Q作QE∥y轴,则
PE=m﹣(m﹣2)=2,QE=(m﹣1)﹣(m﹣3)=2,
∴PQ==AP0.
当以M,P,Q三点为顶点的三角形是以PQ为腰的等腰直角三角形时,点M到PQ的距离为(即为PQ的长),
由A(0,﹣1),B(4,﹣1),P0(2,1)可知,
△ABP0为等腰直角三角形,且BP0⊥AC,BP0=.
如答图1,过点B作直线l1∥AC,交抛物线于点M,则M为符合条件的点.
∴可设直线l1的解析式为:y=x+b1.
∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5.∴直线l1的解析式为:y=x﹣5.
解方程组,得:.
∴M1(4,﹣1),M2(﹣2,﹣7).

②取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.
如答图2,连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,
∴四边形PQFN为平行四边形.
∴NP=FQ.
∴NP+BQ=FQ+B′Q≥FB′.
∴当B′、Q、F三点共线时,NP+BQ最小,则取最大值,
∴点Q的坐标为.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x+m与抛物线y=x2-2x+l交于不同的两点M、N(点M在点N的左侧).
(1)设抛物线的顶点为B,对称轴l与直线y=x+m的交点为C,连结BM、BN,若S△MBC=S△NBC,求直线MN的解析式;
(2)在(1)条件下,已知点P(t,0)为x轴上的一个动点,
①若△PMN为直角三角形,求点P的坐标.
②若∠MPN>90°,则t的取值范围是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+bx+c经过A(-1, 0)、B(4, 5)两点,过点B作BC⊥x轴,垂足为C.
(1)求抛物线的解析式;
(2)求tan∠ABO的值;
(3)点M是抛物线上的一个点,直线MN平行于y轴交直线AB于N,如果以M、N、B、C为顶点的四边形是平行四边形,求出点M的横坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知点A1,A2,…,A2011在函数位于第二象限的图象上,点B1,B2,…,B2011在函数位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形,…,都是正方形,则正方形的边长为
A.2010B.2011C.2010D.2011

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D。
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知二次函数经过、C三点,点是抛物线与直线的一个交点.
(1)求二次函数关系式和点C的坐标;
(2)对于动点,求的最大值;
(3)若动点M在直线上方的抛物线运动,过点M做x轴的垂线交x轴于点F,如果直线AP把线段MF分成1:2的两部分,求点M的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数(m是常数)
(1)求证:不论m为何值,该函数的图像与x轴没有公共点;
(2)把该函数的图像沿x轴向下平移多少个单位长度后,得到的函数的图像与x轴只有一个公共点?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为(     ).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.
⑴ 求出月销售量y(万件)与销售单价x(元)之间的函数关系式;
⑵ 求出月销售利润z(万元)与销售单价x(元)之间的函数关系式,并在下面坐标系中,画出图象草图;

⑶ 为了使月销售利润不低于480万元,请借助⑵中所画图象进行分析,说明销售单价的取值范围.

查看答案和解析>>

同步练习册答案