精英家教网 > 初中数学 > 题目详情

【题目】1)如图1所示,ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F

①若∠B90°则∠F   

②若∠Ba,求∠F的度数(用a表示);

2)如图2所示,若点GCB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+H的值是否变化?若变化,请说明理由;若不变,请求出其值.

【答案】1)①45°;②∠Fa;(2)∠F+H的值不变,是定值180°

【解析】

1)①②依据AD平分∠CAECF平分∠ACB,可得∠CAD=CAE,∠ACF=ACB,依据∠CAE是△ABC的外角,可得∠B=CAE-ACB,再根据∠CAD是△ACF的外角,即可得到∠F=CAD-ACF=CAE-ACB=(∠CAE-ACB=B

2)由(1)可得,∠F=ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+ABG,进而得到∠F+H=90°+CBG=180°.

解:(1)①∵AD平分∠CAECF平分∠ACB

∴∠CADCAE,∠ACFACB

∵∠CAEABC的外角,

∴∠B=∠CAE﹣∠ACB

∵∠CADACF的外角,

∴∠F=∠CAD﹣∠ACFCAEACB(∠CAE﹣∠ACB)=B45°

故答案为:45°

②∵AD平分∠CAECF平分∠ACB

∴∠CADCAE,∠ACFACB

∵∠CAE是△ABC的外角,

∴∠B=∠CAE﹣∠ACB

∵∠CADACF的外角,

∴∠F=∠CAD﹣∠ACFCAEACB(∠CAE﹣∠ACB)=Ba

2)由(1)可得,∠FABC

∵∠AGB与∠GAB的角平分线交于点H

∴∠AGHAGB,∠GAHGAB

∴∠H180°﹣(∠AGH+GAH)=180°(∠AGB+GAB)=180°180°﹣∠ABG)=90°+ABG

∴∠F+HABC+90°+ABG90°+CBG180°

∴∠F+H的值不变,是定值180°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(知识重现)我们知道,在axN中,已知底数a,指数x,求幂N的运算叫做乘方运算.例如23=8:已知幂N,指数x,求底数a的运算叫做开方运算,例如=2

(学习新知)

现定义:如果ax=Na0a1),即ax次方等于Na0a1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN.其中a叫做对数的底数,N叫做真数,x叫做以a为底N的对数,例如log28=3,零没有对数;在实数范围内,负数没有对数.

(应用新知)

1)选择题:在式子log5125中,真数是_______

2计算以下各对数的值:log39=_______log327=_______

根据中计算结果,请你直接写出logaMlogaNlogaMN)之间的关系,(其中a0a1M0N0).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.

(1)求证:AM=AN;
(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( )

A.6米
B.8米
C.18米
D.24米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD中,∠D=∠B90°AE平分∠DABCF平分∠DCB

1)若∠DAB72°,∠2   °,∠3   °

2)求证:AECF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°,∠B30°,以点A为圆心,任意长为半径画弧分别交ABAC于点MN,再分别以MN为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则SDACSABC_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

已知,在RtABC中,ACBC,∠C90°DAB边的中点,∠EDF90°,∠EDF绕点D旋转,它的两边分别交ACCB(或它们的延长线)于点EF

1)(问题发现)

如图1,当∠EDF绕点D旋转到DEAC于点E时(如图1),

①证明:△ADE≌△BDF

②猜想:SDEF+SCEF   SABC

2)(类比探究)

如图2,当∠EDF绕点D旋转到DEAC不垂直时,且点E在线段AC上,试判断SDEF+SCEFSABC的关系,并给予证明.

3)(拓展延伸)

如图3,当点E在线段AC的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,SDEFSCEFSABC又有怎样的关系?(写出你的猜想,不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设m是整数,关于x的方程mx2-(m-1)x+1=0有有理根,则方程的根为( )。
A.
B.x=-1
C.
D.有无数个根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.
(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;
(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.

查看答案和解析>>

同步练习册答案