【题目】在探究“尺规三等分角”这个数学命题中,利用了如图,该图中,四边形ABCD是矩形,线段AC绕点A逆时针旋转得到线段AF,CF、BA的延长线交于点E,若∠E=∠FAE,∠ACB=21°,则∠ECD的度数是(________________)
【答案】23°
【解析】
由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=∠AFC=2∠FEA=2∠ECD,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.
解:∵四边形ABCD是矩形,
∴∠BCD=90°,AB∥CD,AD∥BC,
∴∠FEA=∠ECD,∠DAC=∠ACB=21°,
∵∠ACF=∠AFC,∠FAE=∠FEA,
∴∠ACF=∠AFC=2∠FEA=2∠ECD,
设∠ECD=x,则∠ACF=2x,
∴∠ACD=3x,
∴3x+21°=90°,
解得:x=23°,
故答案为:23°.
科目:初中数学 来源: 题型:
【题目】2017年全球超级计算机500强名单公布,中国超级计算机“神威·太湖之光”和“天河二号”携手夺得前两名.已知“神威·太湖之光”的浮点运算速度是“天河二号”的2.74倍.这两种超级计算机分别进行100亿亿次浮点运算,“神威·太湖之光”的运算时间比“天河二号”少18.75秒,求这两种超级计算机的浮点运算速度.设“天河二号”的浮点运算速度为亿亿次/秒,依题意,可列方程为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学共有学生2000名,各年级男、女生人数如下表:
年级 | 六年级 | 七年级 | 八年级 | 九年级 |
男生 | 250 | z | 254 | 258 |
女生 | x | 244 | y | 252 |
若从全校学生中任意抽取一名,抽到六年级女生的概率是0.12;若将各年级的男、女学生人数制成扇形统计图,八年级女生对应扇形的圆心角为44.28°.
(1)求x,y,z的值;
(2)求各年级女生的平均数;
(3)如果从八年级随机抽取36名学生参加社会实践活动,求抽到八年级某同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4,BC=8,过对角线AC中点O的直线分别交BC、AD边于点E、F.
(1)求证:四边形AECF是平行四边形;
(2)当四边形AECF是菱形时,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请阅读下列材料,并完成相应的任务.
在数学中,当问题的条件不够时间,常添加辅助线构成新图形,形成新关系,建立已知与未知的桥梁,从而把原问题转化为易于解决的问题.在著名美籍匈牙利数学教波利亚所著的《数学的发现》一书中有这样一个例子:试作一个三角形,使它的三边长分别是各条中线长的三分之一,解决这个问题的步骤如下:
第一步,如图1,己知的三条中线,和相交于点,则有.
下面是该结论的部分证明过程:
证明:如图1,过点作的平分线,交的延长线于点,则.
又,
∴.
∴.
∵点是的中点,
∴.
……
第二步,同理可以证明:.
第三步,如图2,取BM的中点,连接.则的三边长分别是各条中线长的三分之一.
任务:(1)请在上面第一步中证明过程的基础上完成对结论的证明;
(2)请完成第三步的结论的证明;
(3)请直接写出图2中与的面积比:_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.
(1)如图①,若AB=1,DG=2,求BH的长;
(2)如图②,连接AH、GH,求证:AH=GH且AH⊥GH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y(k>0,x>0)的图象经过AC的中点D,则k的值为( )
A.4B.5C.6D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(9分)为了提高学生写好汉字的积极性,某校组织全校学生参加汉字听写比赛,比赛成绩从高到低只分A、B、C、D四个等级.若随机抽取该校部分学生的比赛成绩进行统计分析,并绘制了如下的统计图表:
根据图表的信息,回答下列问题:
(1)本次抽查的学生共有 名;
(2)表中和所表示的数分别为: , ,并在图中补全条形统计图;
(3)若该校共有名学生,请你估计此次汉字听写比赛有多少名学生的成绩达到B级及B级以上?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com