【题目】如图,在矩形ABCD中,E、F分别是AB、AD的中点,连接AC、EC、EF、FC,且EC⊥EF.
(1)求证:△AEF∽△BCE;
(2)若AC=2,求AB的长;
(3)在(2)的条件下,△ABC的外接圆圆心与△CEF的外接圆圆心之间的距离为 .
【答案】(1)见解析;(2)2;(3)
【解析】
(1)利用同角的余角判断出∠AFE=∠BEC,即可得出结论;
(2)设AE=x,AF=y,则BE=x,AB=2x,BC=AD=2y,进而利用△AEF∽BCE,得出,即x2=2y2①,再用勾股定理得出(2x)2+(2y)2=(2)2,即x2+y2=3②,联立①②即可得出结论;
(3)先判断出△ABC的外接圆的圆心是AC的中点与△CEF的外接圆的圆心为CF的中点,进而得出MN是AF的一半,再用勾股定理求出AD,进而得出AF,即可得出结论.
(1)证明:∵四边形ABCD是矩形,
∴∠EAF=∠CBE=90°,
∴∠AEF+∠AFE=90°,
∵EC⊥EF,
∴∠FEC=90°,
∴∠AEF+∠BEC=90°,
∴∠AFE=∠BEC,
∵∠EAF=∠CBE=90°,
∴△AEF∽△BCE,
(2)∵四边形ABCD是矩形,
∴AD=BC,
∵E、F分别是AB、AD的中点
∴AE=BE=AD,
设AE=x,AF=y,
则BE=x,AB=2x,BC=AD=2y,
∵△AEF∽BCE,
∴,
∴,
∴x2=2y2①,
∵∠B=90°,
∴AB2+BC2=AC2,
∴(2x)2+(2y)2=(2)2,
∴x2+y2=3②,
由①②得,(舍)或(舍)或(舍)或
∴AE=,AF=1,
∵点E是AB的中点,
∴AB=2AE=2,
(3)解:如图,
∵∠CEF=90°,
∴△CEF是直角三角形,
∴△CEF的外接圆的圆心是斜边CF的中点,记作点M,
∴CM=FM,
∵四边形ABCD是矩形,
∴AD=BC,∠ABC=90°,
∴△ABC是直角三角形,
∴△ABC的外接圆的圆心是斜边AC的中点,记作N,
∴AN=CN,
∵CM=FM,
∴MN=AF,
由(2)知,AB=2,
∵AC=2,
根据勾股定理得,BC==2,
∴AD=2,
∵点F是AD的中点,
∴AF=AD=1,
∴MN=AF=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆On与直线l相切.设半圆O1,半圆O2,…,半圆On的半径分别是r1,r2,…,rn,则当直线l与x轴所成锐角为30°,且r1=1时,r2018=_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知MN是⊙O的直径,点Q在⊙O上,将劣弧沿弦MQ翻折交MN于点P,连接PQ,若∠PMQ=16°,则∠PQM的度数为( )
A.32°B.48°C.58°D.74°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.
(1)求抛物线的解析式;
(2)求点P在运动的过程中线段PD长度的最大值;
(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;
(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(2,q)两点,则不等式ax2+mx+c>n的解集是( )
A.-1<x<2B.x>-1或x<2C.-2<x<1D.x<-2或x>1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC是等边三角形,点D、E分别在BC、AC上,且CE=BD,BE、AD相交于点F.求证:
(1)△ABD≌△BCE;
(2)△AEF∽△ABE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了测量一棵树CD的高度,测量者在B处立了一根高为2.5m的标杆,观测者从E处可以看到杆顶A,树顶C在同一条直线上,若测得BD=7m,FB=3m,EF=1.6m,则树高为_____m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;最大值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com