精英家教网 > 初中数学 > 题目详情
(2006•泰安)如图是某一立方体的侧面展开图,则该立方体是( )

A.
B.
C.
D.
【答案】分析:由立方体中各图形的位置可知,结合各选项是否符合原图的特征.
解答:解:A、两个圆所在的面是相对的,不相邻,故A错误;
B、C中空白的圆圈不与白色的三角形相邻,故B、C错误;
D、正确.
故选D.
点评:易错易混点:学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2006•泰安)如图,Rt△AOB是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上,OB=,∠BAO=30度.将Rt△AOB折叠,使BO边落在BA边上,点O与点D重合,折痕为BC.
(1)求直线BC的解析式;
(2)求经过B,C,A三点的抛物线y=ax2+bx+c的解析式;若抛物线的顶点为M,试判断点M是否在直线BC上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年山东省泰安市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•泰安)如图,Rt△AOB是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上,OB=,∠BAO=30度.将Rt△AOB折叠,使BO边落在BA边上,点O与点D重合,折痕为BC.
(1)求直线BC的解析式;
(2)求经过B,C,A三点的抛物线y=ax2+bx+c的解析式;若抛物线的顶点为M,试判断点M是否在直线BC上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年山东省泰安市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•泰安)如图,Rt△AOB是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上,OB=,∠BAO=30度.将Rt△AOB折叠,使BO边落在BA边上,点O与点D重合,折痕为BC.
(1)求直线BC的解析式;
(2)求经过B,C,A三点的抛物线y=ax2+bx+c的解析式;若抛物线的顶点为M,试判断点M是否在直线BC上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年山东省泰安市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•泰安)如图,点D,E分别在△ABC的边BC,BA上,四边形CDEF是等腰梯形,EF∥CD.EF与AC交于点G,且∠BDE=∠A.
(1)试问:AB•FG=CF•CA成立吗?说明理由;
(2)若BD=FC,求证:△ABC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源:2006年山东省泰安市中考数学试卷(大纲卷)(解析版) 题型:选择题

(2006•泰安)如图,在梯形ABCD中,AD∥BC,M,N分别是AD,BC的中点,若∠B与∠C互余,则MN与BC-AD的关系是( )
A.2MN<BC-AD
B.2MN>BC-AD
C.2MN=BC-AD
D.MN=2(BC-AD)

查看答案和解析>>

同步练习册答案