精英家教网 > 初中数学 > 题目详情

做一做
(1)在直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.

(1)(1,0)、(6,0)、(6,1)、(5,0)、(6,-1)、(6,0);
(2)(2,0)、(5,3)、(4,0);
(3)(2,0)、(5,-3)、(4,0).
观察所得到的图形像什么?如果要将此图形向上平移到x轴上方,那么至少要向上平移几个单位长度.

(2)如图,AD是∠EAC的平分线,AD∥BC,∠B=45°,则∠DAC的度数是多少?
(写出解答过程)


(3)如图所示的平面直角坐标系,在直角梯形OABC中,CB∥OA,CB=8,OC=8,∠OAB=45°

(1)求点A、B、C的坐标;
(2)求梯形OABC的面积.

解:(1)像条鱼,如果要将此图形向上平移到x轴上方,那么至少要向上平移3个单位长度.

(2)∵AD是∠EAC的平分线,AD∥BC,∠B=45°
∴∠DAC=∠EAD=∠B=45°




(3)过点B作BD⊥OA于点D
∵CB∥OA,CB=8,OC=8,∠OAB=45°
∴DA=BD=OC=8,
∴OA=16,
∴点A、B、C的坐标分别是(16,0),(8,8),(0,8).
梯形OABC的面积=×(16+8)×8=96.
分析:(1)先根据题意描点连线,作图后再根据图象判断怎么平移;
(2)直接根据平行的性质可求∠DAC=∠EAD=∠B=45°;
(3)过点B作BD⊥OA与点D,根据等腰直角三角形的性质可依次求得对应线段的长度,表示点的坐标即可.
直接利用梯形的面积公式求面积.
点评:主要考查了坐标的平移变化和平行线的性质,角平分线的性质,梯形的性质,以及坐标与图形的关系.
要熟练掌握这些性质和特点才能灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

做一做
(1)在直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.
精英家教网
(1)(1,0)、(6,0)、(6,1)、(5,0)、(6,-1)、(6,0);
(2)(2,0)、(5,3)、(4,0);
(3)(2,0)、(5,-3)、(4,0).
观察所得到的图形像什么?如果要将此图形向上平移到x轴上方,那么至少要向上平移几个单位长度.

(2)如图,AD是∠EAC的平分线,AD∥BC,∠B=45°,则∠DAC的度数是多少?
(写出解答过程)
精英家教网

(3)如图所示的平面直角坐标系,在直角梯形OABC中,CB∥OA,CB=8,OC=8,∠OAB=45°
精英家教网
(1)求点A、B、C的坐标;
(2)求梯形OABC的面积.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(11)(解析版) 题型:解答题

(2002•甘肃)(在下面的(I)(II)两题中选做一题,若两题都做,按第(I)题评分)
(I)如图,在△ABC中,AB=4,BC=3,∠B=90°,点D在AB上运动,但与A、B不重合,过B、C、D三点的圆交AC于E,连接DE.
(1)设AD=x,CE=y,求y与x之间的函数关系式,并指出自变量x的取值范围;
(2)当AD长为关于x的方程2x2+(4m+1)x+2m=0的一个整数根时,求m的值.

(II)如图,在直角坐标系xOy中,以点A(0,-3)为圆心作圆与x轴相切,⊙B与⊙A外切干点P,B点在x轴正半轴上,过P点作两圆的公切线DP交y轴于D,交x轴于C,
(1)设⊙A的半径为r1,⊙B的半径为r2,且r2=r1,求公切线DP的长及直线DP的函数解析式,
(2)若⊙A的位置、大小不变,点B在X轴正半轴上移动,⊙B与⊙A始终外切.过D作⊙B的切线DE,E为切点.当DE=4时,B点在什么位置?从解答中能发现什么?

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《三角形》(08)(解析版) 题型:解答题

(2002•甘肃)(在下面的(I)(II)两题中选做一题,若两题都做,按第(I)题评分)
(I)如图,在△ABC中,AB=4,BC=3,∠B=90°,点D在AB上运动,但与A、B不重合,过B、C、D三点的圆交AC于E,连接DE.
(1)设AD=x,CE=y,求y与x之间的函数关系式,并指出自变量x的取值范围;
(2)当AD长为关于x的方程2x2+(4m+1)x+2m=0的一个整数根时,求m的值.

(II)如图,在直角坐标系xOy中,以点A(0,-3)为圆心作圆与x轴相切,⊙B与⊙A外切干点P,B点在x轴正半轴上,过P点作两圆的公切线DP交y轴于D,交x轴于C,
(1)设⊙A的半径为r1,⊙B的半径为r2,且r2=r1,求公切线DP的长及直线DP的函数解析式,
(2)若⊙A的位置、大小不变,点B在X轴正半轴上移动,⊙B与⊙A始终外切.过D作⊙B的切线DE,E为切点.当DE=4时,B点在什么位置?从解答中能发现什么?

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《一元二次方程》(07)(解析版) 题型:解答题

(2002•甘肃)(在下面的(I)(II)两题中选做一题,若两题都做,按第(I)题评分)
(I)如图,在△ABC中,AB=4,BC=3,∠B=90°,点D在AB上运动,但与A、B不重合,过B、C、D三点的圆交AC于E,连接DE.
(1)设AD=x,CE=y,求y与x之间的函数关系式,并指出自变量x的取值范围;
(2)当AD长为关于x的方程2x2+(4m+1)x+2m=0的一个整数根时,求m的值.

(II)如图,在直角坐标系xOy中,以点A(0,-3)为圆心作圆与x轴相切,⊙B与⊙A外切干点P,B点在x轴正半轴上,过P点作两圆的公切线DP交y轴于D,交x轴于C,
(1)设⊙A的半径为r1,⊙B的半径为r2,且r2=r1,求公切线DP的长及直线DP的函数解析式,
(2)若⊙A的位置、大小不变,点B在X轴正半轴上移动,⊙B与⊙A始终外切.过D作⊙B的切线DE,E为切点.当DE=4时,B点在什么位置?从解答中能发现什么?

查看答案和解析>>

同步练习册答案