精英家教网 > 初中数学 > 题目详情

【题目】某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:

时间t()

0

0.2

0.4

0.6

0.8

1.0

1.2

行驶距离s()

0

2.8

5.2

7.2

8.8

10

10.8

假设这种变化规律一直延续到汽车停止.

(1)根据这些数据在给出的坐标系中画出相应的点;

(2)选择适当的函数表示st之间的关系,求出相应的函数解析式;

(3)①刹车后汽车行驶了多长距离才停止?

②当t分别为t1,t2(t1<t2),对应s的值分别为s1,s2,请比较的大小.

【答案】1)见解析;(2;(3)①米;②

【解析】

1)描点,用平滑曲线连接即可;
2)设出二次函数解析式,把3个点的坐标代入可得二次函数解析式,进而再把其余的点代入验证是否在二次函数上;
3)①汽车在刹车时间最长时停止,利用公式法,结合(2)得到的函数解析式,求得相应的最值即可;
②分别求得所给代数式的值,根据所给时间的大小,比较即可.

(1)描点图所示:

(2)由散点图可知该函数为二次函数

设二次函数的解析式为:s=at2+bt+c

∵抛物线经过点(0,0)

c=0

又由点(0.2,2.8),(1,10)可得:

解得:a=5b=15

∴二次函数的解析式为:s=5t2+15t

经检验,其余各点均在s=5t2+15t.

(3)①汽车刹车后到停止时的距离即汽车滑行的最大距离,

t==,滑行距离最大,S===

即刹车后汽车行驶了米才停止.

②∵s=5t2+15t,

,

同理

t1<t2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)

(2)如图,小方在清明假期中到郊外放风筝,风筝飞到C 处时的线长BC20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度.(,,结果精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则yx的图象大致为(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是红球的概率为

1)布袋里红球有______个.

2)先从布袋中摸出个球后不放回,再摸出1个球,请用列表或画树状图的方法求出两次摸到的球都是白球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB在反比例函数y(x0)的图象上,点CD在反比例函数y(k0)的图象上,ACBDy轴,已知点AB的横坐标分别为12,△OAC与△ABD的面积之和为,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于点AB,与轴交于点C。过点CCDx轴,交抛物线的对称轴于点D,连结BD。已知点A坐标为(-10)。

1)求该抛物线的解析式;

2)求梯形COBD的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数是常数, ).

)当该函数的图像与轴没有交点时,求的取值范围.

)把该函数的图像沿轴向上平移多少个单位长度后,得到的函数的图像与轴只有一个公共点?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是⊙O的内接三角形,AB是⊙O的直径,OFAB,交AC于点F,点EAB的延长线上,射线EM经过点C,且∠ACE+AFO=180°.

(1)求证:EM是⊙O的切线;

(2)若∠A=E,BC=,求阴影部分的面积.(结果保留和根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商家经销一种绿茶,用于装修门面已投资4000元已知绿茶每千克成本40元,经研究发现销量ykg)与销售单价x(元/kg)之间的函数关系是).以该绿茶的月销售利润为w(元)[销售利润(每千克单价每千克成本)销售量]

1)求m与之间的函数关系式,并求出x为何值时,w的值最大?

2)若在第一个月里,按使w获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于85元,要想在全部收回投资的基础上使第二个月的利润达到2200元,那么第二个月里应该确定销售单价为多少元?

查看答案和解析>>

同步练习册答案