精英家教网 > 初中数学 > 题目详情
16.在创建“全国文明城市”和“省级文明城区”过程中,栾城区污水处理厂决定先购买A、B两型污水处理设备共20台,对城区周边污水进行处理.已知每台A型设备价格为12万元,每台B型设备价格为10万元;1台A型设备和2台B型设备每周可以处理污水640吨,2台A型设备和3台B型设备每周可以处理污水1080吨.
(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?
(2)要想使污水处理厂购买设备的资金不超过230万元,但每周处理污水的量又不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?

分析 (1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;
(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.

解答 解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,依题意有
$\left\{\begin{array}{l}{x+2y=640}\\{2x+3y=1080}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=240}\\{y=200}\end{array}\right.$.
即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;
(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20-x)台,
则$\left\{\begin{array}{l}{12x+10(20-x)≤230}\\{240x+200(20-x)≥4500}\end{array}\right.$,
解得12.5≤x≤15,
第一种方案:当x=13时,20-x=7,花费的费用为:13×12+7×10=226万元;
第二种方案:当x=14时,20-x=6,花费的费用为:14×12+6×10=228万元;
第三种方案;当x=15时,20-x=5,花费的费用为:15×12+5×10=230万元;
即购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.

点评 本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.下列各组数能作为直角三角形的三边长的是(  )
A.5、6、7B.4、8、10C.6、8、10D.9、15、17

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,正方形纸片ABCD的边长为2,翻折∠B、∠D.使两个直角的顶点重合于直线BD上一点P.EF与GH为折痕.若BP=$\frac{1}{4}$AC,则图中阴影部分的六边形AEFCHG的面积为$\frac{11}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,AB为⊙O的直径,点C是⊙O上的一点,CD⊥AB,垂足为点D,CF⊥AF,且CF=CD,AF交⊙O于点E,BE交AC于点M.
(1)求证:CF是⊙O的切线;
(2)试探究CD、AF、BD之间的数量关系;并证明你的结论.
(3)若AB=6,cos∠BCD=$\frac{5}{6}$,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.图中ABCD是梯形,ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是4平方厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列分解因式中,结果正确的是(  )
A.x2-1=(x-1)2B.x2+2x-1=(x+1)2C.x2-6x+9=x(x-6)+9D.2x2-2=2(x+1)(x-1)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.观察下列单项式:a,-3a2,9a3,-27a4,81a5,…,从第2个单项式开始,计算每个单项式与它前一个单项式的商,你发现的规律是都是-3a,按照这一规律,第7个单项式应是729a7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.图①是一个长为2m,宽为2n的长方形纸片,将长方形纸片沿图中虚线剪成四个形状和大小完全相同的小长方形,然后拼成图②所示的一个大正方形.

(1)用两种不同的方法表示图②中小正方形(阴影部分)的面积:
方法一:S小正方形=(m+n)2-4mn;
方法二:S小正方形=(m-n)2
(2)(m+n)2,(m-n)2,mn这三个代数式之间的等量关系为(m+n)2-4mn=(m-n)2
(3)应用(2)中发现的关系式解决问题:若x+y=9,xy=14,求x-y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.男生小明和三名女生、四名男生一起玩丢手帕游戏,小明随意将手帕丢在一名同学的后面,那么这名同学是女生的概率为(  )
A.$\frac{1}{2}$B.$\frac{3}{8}$C.$\frac{3}{7}$D.无法确定

查看答案和解析>>

同步练习册答案