精英家教网 > 初中数学 > 题目详情

【题目】某校兴趣小组在创客嘉年华活动中组织了计算机编程比赛,八年级每班派25名学生参加,成绩分别为四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.将八年级的一班和二班的成绩整理并绘制成如下统计图表:

班级

平均数(分)

中位数(分)

众数(分)

方差

一班

876

9

9

二班

876

8

10

请根据本学期所学过的《数据的分析》相关知识分析上述数据,帮助计算机编程老师选择一个班级参加校级比赛,并阐述你选择的理由.

【答案】答案不唯一.

【解析】

答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可.

答案不唯一,学生只要是通过分析表格中所给数据而得出的结论,同时言之有理即可给分,否则不给分.

如:选择一班参加校级比赛.理由:由表格中数据可知,两个班级的平均分一样,而从中位数、众数、方差上看,一班在中位数和方差上面均优于二班,因此可以选择一班参加校级比赛.

再如:选择二班参加校级比赛.理由:由表格中数据可知,两个班级的平均分一样,二班的众数高于一班,因此可以选择二班参加校级比赛.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】a,b,c△ABC的三条边,关于x的方程x2+x+c-a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.

(1)试判断△ABC的形状;

(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.

(1)求证:四边形ADEF是平行四边形;

(2)若∠ABC=60°,BD=6,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCECD的中点,连接AEBEBEAE,延长AEBC的延长线于点F

求证:(1)FCAD(2)ABBC+AD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(﹣3,0),点 B y轴正半轴上一动点,点C、D x正半轴上.

(1)如图,若BAO=60°,BCO=40°,BD、CE ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____

(2)如图,ABD是等边三角形,以线段BC为边在第一象限内作等边BCQ,连接 QD并延长 y轴于点 P,当点 C运动到什么位置时满足 PD=DC?请求出点C的坐标;

(3)如图,以AB为边在AB的下方作等边ABP,点B y轴上运动时,求OP的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PMPN,分别交x轴和y轴于点MN.点MNx轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(xy)称为点P的斜坐标,记为Pxy).

(1)如图2,ω=45°,矩形OABC中的一边OAx轴上,BCy轴交于点DOA=2,OCl

ABC在此斜坐标系内的坐标分别为A   B   C   

设点Pxy)在经过OB两点的直线上,则yx之间满足的关系为   

设点Qxy)在经过AD两点的直线上,则yx之间满足的关系为   

(2)若ω=120°,O为坐标原点.

如图3,圆My轴相切原点O,被x轴截得的弦长OA=4 ,求圆M的半径及圆心M的斜坐标.

如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(-33)B(-4-2)C(-1-1)

1)在图中作出ABC关于y轴对称的ABC',并写出点C'的坐标________

2)在y轴上画出点P,使PA+PC最小,并直接写出P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,,且 满足,直线经过点

1 点的坐标为( ), 点的坐标为( );

2)如图1,已知直线经过点 轴上一点 ,点在直线AB上且位于轴右侧图象上一点,连接,且

①求点坐标;

②将沿直线AM 平移得到,平移后的点与点重合, 上的一动点,当的值最小时,请求出最小值及此时 N 点的坐标;

3)如图 2,将点向左平移 2 个单位到点,直线经过点,点是点关于轴的对称点,直线经过点和点,动点从原点出发沿着轴正方向运动,连接,过点作直线的垂线交轴于点,在直线上是否存在点,使得是等腰直角三角形?若存在,求出点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,,且满足

(1)两点的坐标;

(2)过点的直线上有一点,连接 ,如图2,当点在第二象限时,轴于点,延长轴于点,设的长为的长为,用含的式子表示

(3)(2)的条件下,如图3,当点在第一象限时,过点于点,连接,若,求的长.

查看答案和解析>>

同步练习册答案