精英家教网 > 初中数学 > 题目详情
17.如图,已知△ABC,求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求:尺规作图,保留作图痕迹,不写作法)

分析 直接作出线段AC的垂直平分线,进而得出与AB的交点,进而得出答案.

解答 解:如图所示:⊙O即为所求.

点评 此题主要考查了复杂作图,正确掌握垂直平分线的性质是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.(1)问题发现:
如图1,在△ABC中,∠A=α,∠ABC和∠ACB的平分线交于P,则∠BPC的度数是90°+$\frac{1}{2}$α
(2)类比探究:
如图2,在△ABC中,∠ABC的平分线和∠ACB的外角∠ACE的角平分线交于P,则∠BPC与∠A的关系是∠BPC=$\frac{1}{2}$∠A,并说明理由.

(3)类比延伸:
如图3,在△ABC中,∠ABC的平分线和∠ACB的外角∠ACE的角平分线交于P,请直接写出∠BPC与∠A的关系是∠BPC=90°-$\frac{1}{2}$∠A.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解不等式组:$\left\{\begin{array}{l}{\frac{x-1}{2}≥\frac{2x-5}{3}}\\{3x>5+2(x-1)}\end{array}\right.$并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.有三辆车按A,B,C编号,甲、乙两人可任意选坐一辆车,则两人同坐C号车的概率为$\frac{1}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)已知2x-1=3,求代数式(x-3)2+2x(3+x)-7的值;
(2)化简:($\frac{{x}^{2}-{y}^{2}}{{x}^{2}-2xy+{y}^{2}}$-$\frac{y}{x-y}$)÷$\frac{x}{x-y}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,抛物线C1:y=ax2+bx+4与x轴交于A(-3,0),B两点,与y轴交于点C,点M(-$\frac{3}{2}$,5)是抛物线C1上一点,抛物线C2与抛物线C1关于y轴对称,点A、B、M关于y轴的对称点分别为点A′、B′、M′.
(1)求抛物线C1的解析式;
(2)过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2-5x+2=0,操作步骤是:
第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;
第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);
第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n即为该方程的另一个实数根.

(1)在图2中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);
(2)结合图1,请证明“第三步”操作得到的m就是方程x2-5x+2=0的一个实数根;
(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1),Q(m2,n2)就是符合要求的一对固定点?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列实数中最大的是(  )
A.$\root{3}{-8}$B.0C.($\frac{1}{3}$)-1D.|-$\sqrt{3}$|

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1=120°.

查看答案和解析>>

同步练习册答案