精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.
则:(1)平行四边形ABCD的周长=
 

(2)平行四边形ABCD的面积=
 
分析:(1)根据平行线的性质和角平分线的性质求出∠EBC+∠ECB=90°,推出△EBC是直角三角形,根据勾股定理求出BC,根据等腰三角形的判定推出DE=CD,AB=AE,即可求出平行四边形的周长;
(2)作EH⊥BC,垂足H,根据三角形的面积公式求出DH,根据面积求出即可.
解答:解:(1)∵BE和CE分别平分∠ABC和∠BCD,
∵AB∥CD,
∴∠ABC+∠DCB=180°,
1
2
(∠ABC+∠DCB)=90°,
BE和CE分别是∠ABC和∠BCD平分线,
∴∠EBC+∠ECB=90°,
△EBC是直角三角形,
根据勾股定理:BC=13,
∵AD∥BC,
∠DEC=∠ECB,(内错角相等)
∠ECD=∠ECB,(已知)
∴∠DEC=∠ECD,
DE=CD,
同理AB=AE,
AB+CD=AE+DE=AD=BC=13,
∴平行四边形ABCD周长=BC+AD+AB+CD=13+13+13=39,
故答案为:39.

(2)如图,作EH⊥BC,垂足为H
精英家教网S△BEC=
1
2
BE×EC=
1
2
×12×5=30,
S△BEC=
1
2
×BC×EH=13×EH×
1
2

13×EH×
1
2
=30,
EH=
60
13

∴S平行四边形ABCD=BC*EH=13×
60
13
=60,
故答案为:60.
点评:本题主要考查对平行四边形的性质,等腰三角形的性质和判定,勾股定理,勾股定理的逆定理,平行线的性质,角平分线的性质,三角形的面积等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABC0中,已知点A、C两点的坐标为A(
5
5
),C(2
5
,0).
(1)求点B的坐标.
(2)将平行四边形ABCO向左平移
5
个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.
(3)求平行四边形ABCO的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.
(2)如图2,已知△ABC的三个顶点的坐标分别为A(-2,3)、B(-6,0)、C(-1,0).
(1)请直接写出点A关于y轴对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南平模拟)如图,已知四边形ABCD.请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予证明.
关系:①AD∥BC;②AB=CD;③∠B+∠C=180°;④∠A=∠C.
已知:在四边形ABCD中,
.(填序号,写出一种情况即可)  
求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形OABC中,已知点A、C两点的坐标为A (
3
3
),C(2
3
,0).
(1)填空:点B的坐标是
(3
3
3
(3
3
3

(2)将平行四边形OABC向左平移
3
个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在平面直角坐标系xOy中,直线AB与x轴、y轴的交点分别为A、B,OB=3,,将∠OBA对折,使点O的对应点H恰好落在直线AB上,折痕交x轴于点C,

(1)求过A、B、C三点的抛物线解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四

边形?若存在,求出点P的坐标;若不存在,说明理由;

(3)若点Q是抛物线上一个动点,使得以A、B、Q为顶点并且以AB为直角边的直角三角形,直角写出Q点坐标。

查看答案和解析>>

同步练习册答案