精英家教网 > 初中数学 > 题目详情

在锐角△ABC中,AD⊥BC于点D,AB=25,AC=30,AD=24,试判断△ABC的形状.

解:
在Rt△ABD中,BD2=252-242=49,
所以BD=7,
在Rt△ACD中,AD==18.
所以BC=BD+DC=25.∴AB=BC,
所以△ABC是等腰三角形.
分析:在直角△ABD中,已知AB,AD可以求得BD,在直角△ACD中,已知AC,AD,可以求得CD,且BC=BD+CD.比较BC,AB,AC的长度即可判定三角形的形状.
点评:本题考查了直角三角形中勾股定理的运用,考查了等腰三角形腰长相等的性质,本题中分别解△ABD和△ACD求BD、CD是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在锐角△ABC中,a、b、c分别表示为∠A、∠B、∠C的对边,O为其外心,则O点到三边的距离之比为(  )
A、a:b:c
B、
1
a
1
b
1
c
C、cosA:cosB:cosC
D、sinA:sinB:sinC

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在锐角△ABC中,最大的高线AH等于中线BM,求证:∠B<60°(如图).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在锐角△ABC中,∠BAC=60°,BD、CE为高,F为BC的中点,连接DE、DF、EF,则结论:①B、E、D、C四点共圆;②AD•AC=AE•AB;③△DEF是等边三角形;④当∠ABC=45°时,BE=
2
DE中,一定正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南开区一模)在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD,则以下结论中一定正确的个数有(  )
①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

在锐角△ABC中,已知
cosA-
1
2
+|tanB-
3
|=0
,且AB=4,则△ABC的面积等于(  )

查看答案和解析>>

同步练习册答案