【题目】如图,在△ABC中,E,D是BC边的三等分点,F是AC的中点,BF分别交AD,AE于点G,H,则BG∶GH∶HF等于( )
A. 1∶2∶3 B. 3∶5∶2 C. 5∶3∶2 D. 5∶3∶1
【答案】C
【解析】
作FM∥BC交AE于点M,则根据△BEH∽△FMH,利用BF表示出HF的长度,作DN∥AC交BF于点N,则△BDN∽△BCF且△DNG∽△AFG,依据△BDN∽△BCF可以用BF表示出BN的长,然后依据△DNG∽△AFG表示出NG的长,则BG,GM,HF都可以利用BF表示出来,则比值即可求解.
设BC=6a,则BD=DE=EC=2a,作FM∥BC交AE于点M,
∵F是AC的中点,
∴
∵FM∥BC,
∴△BEH∽△FMH,
∴ 则
作DN∥AC交BF于点N,设AC=2b,则AF=CF=b,
∴△BDN∽△BCF,
∴
∴
∵DN∥AC,
∴△DNG∽△AFG,
∴
∴,即
∴
∴
∴
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.
(1)求A点坐标;
(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是 ;
(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=﹣x+5的图象与反比例函数y2=(k≠0)在第一象限的图象交于A(1,n)和B两点.
(1)求反比例函数的解析式;
(2)当y2>y1>0时,写出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数,,是常数,且中的与的部分对应值如下表所示,则下列结论中,正确的个数有( )
;当时,;当时,的值随值的增大而减小;
方程有两个不相等的实数根.
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在日历上我们可以发现其中某些数满足一定的规律.如图是2018年8月份的日历,我们任意选择其中所示的方框部分,将方框部分中的4个位置的数交叉相乘,再相减,如8×16-9×15=-7,19×27-20×26=-7,不难发现结果都是-7.
(1)请你再选择一组数按上面的方式计算,看看是否符合这个规律.并用你擅长的表达方式描述这个规律.
(2)请你利用整式的运算对以上的规律加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:
(1)“快车”行驶里程不超过5公里计费8元;
(2)“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;
(3)A点的坐标为(6.5,10.4);
(4)从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元,其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF相交于点G.
(1)如图①,若四边形ABCD是矩形,且DE⊥CF.求证:;
(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,成立?并证明你的结论;
(3)如图③,若BA=BC=9,DA=DC=12,∠BAD=90°,DE⊥CF.求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在国家的宏观调控下,某市的商品房成交价由今年3月份的5000元/m2下降到5月份的4050元/m2.
(1)问4、5两月平均每月降价的百分率是多少?
(2)如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破3000元/m2?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com