精英家教网 > 初中数学 > 题目详情

(1)如图1,已知:AB∥CD,∠B+∠D=180°,那么直线BC与ED的位置关系如何?并说明理由.
解:______,
理由:∵AB∥CD(已知)
∴______(______)
∵∠B+∠D=180°(已知)
∴______(等量代换)
∴BC∥ED (______);

(2)如图2,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.
试说明:AC∥DF
解:∵∠1=∠2(已知)
∠1=∠3(______)
∴∠2=∠3(等量代换)
∴______∥______(______)
∴∠C=∠ABD (______)
又∵∠C=∠D(已知)
∴∠D=∠ABD(______)
∴AC∥DF(______).

(1)解:BC∥ED,
理由:∵AB∥CD(已知),
∴∠B=∠C( 直线平行,内错角相等),
∵∠B+∠D=180°(已知),
∴∠C+∠D=180°(等量代换),
∴BC∥ED ( 同旁内角互补,两直线平行);

(2)解:∵∠1=∠2(已知),
∠1=∠3( 对顶角相等),
∴∠2=∠3(等量代换),
∴EC∥DB( 同位角相等,两直线平行),
∴∠C=∠ABD ( 两直线平行,同位角相等);
又∵∠C=∠D(已知),
∴∠D=∠ABD( 等量代换),
∴AC∥DF( 内错角相等,两直线平行).
分析:(1)先根据平行线的性质求出∠B=∠C,通过等量代换求出∠C+∠D=180°,再根据平行线的判定定理解答即可;
(2)先由已知条件及对顶角相等可求出EC∥DB,再根据平行线的性质可得∠C=∠ABD,再由等量代换及平行线的判定定理即可解答.
点评:本题比较简单,考查的是平行线的性质及判定定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网下列说法:
(1)如图1,已知PA=PB,则PO是线段AB的垂直平分线;
(2)对于反比例函数y=
2
x
,(x1,y1),(x2,y2)是其图象上两点,若x1<x2,则y1>y2; 
(3)对角线互相垂直平分的四边形是菱形;
(4)如图2,在△ABC中,∠A=30°,BC=2,则AC=4;
(5)一组对边平行的四边形是梯形;    
(6)y=
k
x
是反比例函数;
(7)若一个等腰三角形的两边长为2和3,那么它的周长为7,
其中正确的有(  )个.
A、0B、1C、2D、5

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:AE=BF;
(2)为响应市人民政府“形象胜于生命”的号召,在甲建筑物上从A点到E点挂一长为30m的宣传条幅(如图2),在乙建筑物的顶部D点测得顶端A点的仰角为45°,测得条幅底端E点的俯角为30°,求底部不能直接到达的两建筑物之间的水平距离(答案可带根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知双曲线y=
k
x
(k>0)
与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:
(1)若点A的坐标为(4,2),则点B的坐标为
 
;若点A的横坐标为m,则点B的坐标可表示为
 

(2)如图2,过原点O作另一条直线l,交双曲线y=
k
x
(k>0)
于P,Q两点,点P在第一象限.
①说明四边形APBQ一定是平行四边形;
②设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知正方形ABCD,将一个45度角∝的顶点放在D点并绕D点旋转,角的两边分别交AB边和BC边于点E和F,连接EF.求证:EF=AE+CF
(1)小明是这样思考的:延长BC到G,使得CG=AE,连接DG,先证△DAE≌△DCG,再证△DEF≌△DGF,请你借助图2,按照小明的思路,写出完整的证明思路.
(2)刘老师看到这条题目后,问了小明两个小问题:①如果正方形的边长和△BEF的面积都等于6,求EF的长②将角∝绕D点继续旋转,使得角∝的两边分别和AB边延长线、BC边的延长线交于E和F,如图3所示,猜想EF、AE、CF三线段之间的数量关系并给予证明.请你帮忙解决.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲,已知A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,且AB=CD.
(1)试问OE=0F吗?请说明理由.
(2)若△DEC沿AC方向平移到如图乙的位置,其余条件不变,上述结论是否仍成立?请说明理由.

查看答案和解析>>

同步练习册答案