精英家教网 > 初中数学 > 题目详情
4.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为(  )
A.$\frac{18}{5}$B.$\frac{5}{2}$C.$\frac{24}{5}$D.$\frac{9}{5}$

分析 先根据勾股定理求出AB的长,过C作CM⊥AB,交AB于点M,由垂径定理可知M为AD的中点,由三角形的面积可求出CM的长,在Rt△ACM中,根据勾股定理可求出AM的长,进而可得出结论.

解答 解:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{3}^{2}{+4}^{2}}$=5,
过C作CM⊥AB,交AB于点M,如图所示,
∵CM⊥AB,
∴M为AD的中点,
∵S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$AB•CM,且AC=3,BC=4,AB=5,
∴CM=$\frac{12}{5}$,
在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+($\frac{12}{5}$)2
解得:AM=$\frac{9}{5}$,
∴AD=2AM=$\frac{18}{5}$.
故选A.

点评 本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.设方程x2+ax+b=0与x2+bx+a=0(a<0,b<0,a≠b)有一个公共根,设它们另两个根分别为x1,x2,求x1+x2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的伴随点,己知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,…,若点A1的坐标为(3,1),則点A4的坐标为(0,-2),点A2015的坐标为(-3,1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在平面直角坐标系中,抛物线y=-$\frac{1}{2}{x^2}+\frac{3}{2}$x+2与x轴相交于点A,B,与y轴相交于点C,直线y=kx+$\frac{1}{2}$与抛物线相交于点A,D.
(1)填空:A(-1,0),B(4,0),C(0,2),k=$\frac{1}{2}$;
(2)点M为抛物线对称轴l上一动点,当MA+MC的值最小时,求点M的坐标;
(3)在y轴上是否存在点P,使△PAD是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,把矩形纸片OABC放在平面直角坐标系中,使OA、OC分别落在x轴正半轴、y轴正半轴上,将纸片沿AC折叠,得到点B的对应点B′.若OA=2,OC=3,则点B′的坐标为(-$\frac{10}{13}$,$\frac{15}{13}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P、EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:
①当x=1时,点P是正方形ABCD的中心;
②当x=$\frac{1}{2}$时,EF+GH>AC;
③当0<x<2时,六边形AEFCHG面积的最大值是3;
④当0<x<2时,六边形AEFCHG周长的值不变.
其中正确的选项是(  )
A.①③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.不等式$\frac{x}{2}$>x与ax-6>5x的解集相同,则a<5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:$\sqrt{3}$,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=105°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是①②.(请写出正确结论的序号).

查看答案和解析>>

同步练习册答案