【题目】已知,如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求直线BC的解析式;
(3)求△MCB的面积.
【答案】(1)y=﹣x2+4x+5;(2)y=﹣x+5;(3)15.
【解析】
(1)由A、C、(1,8)三点在抛物线上,根据待定系数法即可求出抛物线的解析式;
(2)由B、C两点的坐标求得直线BC的解析式;
(3)过点M作MN∥y轴交BC轴于点N,则△MCB的面积=△MCN的面积+△MNB的面积=
(1)∵A(﹣1,0),C(0,5),(1,8)三点在抛物线y=ax2+bx+c上,
∴,
解方程组,得,
故抛物线的解析式为y=﹣x2+4x+5;
(2)∵y=﹣x2+4x+5=﹣(x﹣5)(x+1)=﹣(x﹣2)2+9,
∴M(2,9),B(5,0),
设直线BC的解析式为:y=kx+b,
解得,
则直线BC的解析式为:y=﹣x+5;
(3)过点M作MN∥y轴交BC轴于点N,
则△MCB的面积=△MCN的面积+△MNB的面积=
当x=2时,y=﹣2+5=3,则N(2,3),
则MN=9﹣3=6,
则
科目:初中数学 来源: 题型:
【题目】如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子顶端B到地面距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于4m,同时梯子的顶端B下降至B′,那么BB′的长为( )
A. 等于1mB. 大于1mC. 小于1mD. 以上答案都不对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是( ).
A. 点C的坐标是(0,1) B. 线段AB的长为2
C. △ABC是等腰直角三角形 D. 当x>0时,y随x增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
(1)求该抛物线的解析式;
(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在中,,,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N再分别以MN为圆心,大于的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法中正确的有________.
①AD是的平分线;②;③点D在AB的中垂线上;④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com