分析 (1)以CD为直径画弧,取该弧与AB的一个交点即为所求.
(2)由点E是矩形ABCD的AB边上的一个强相似点,得△AEM∽△BCE∽△ECM,根据相似三角形的对应角相等,可求得∠BCE=$\frac{1}{3}$∠BCD=30°,利用含30°角的直角三角形性质可得BE与AB之间的数量关系.
解答 (2)如图所示:点E是四边形ABCD的边AB上的强相似点,
(3)结论:BC=$\frac{\sqrt{3}}{2}$AB.
理由:如图③中,
∵点E是四边形ABCM的边AB上的一个强相似点,
∴△AEM∽△BCE∽△ECM,
∴∠BCE=∠ECM=∠AEM.
由折叠可知:△ECM≌△DCM,
∴∠ECM=∠DCM,CE=CD,
∴∠BCE=$\frac{1}{3}$∠BCD=30°,
BE=$\frac{1}{2}$CE=$\frac{1}{2}$AB.
∴点E是AB的中点时,点E恰好是四边形ABCM的边AB上的一个强相似点,
设AE=BE=a,则EC=2a,
在Rt△EBC中,BC=$\sqrt{E{C}^{2}-E{B}^{2}}$=$\sqrt{3}$a,
∴AB:BC=2a:$\sqrt{3}$a=2:$\sqrt{3}$,
∴BC=$\frac{\sqrt{3}}{2}$AB.
点评 本题是相似三角形综合题,主要考查了相似三角形的对应边成比例的性质,读懂题目信息,理解强相似点的定义是解题的关键,本题的突破点是发现∠BCE=$\frac{1}{3}$∠BCD=30°,属于中考压轴题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -$\frac{7}{2}$ | B. | 2 | C. | $\frac{7}{2}$ | D. | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com