精英家教网 > 初中数学 > 题目详情

如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.

(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;

(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;

(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.


(1)证明:如图1,

∵EN∥AD,

∴∠MAD=∠MNE,∠ADM=∠NEM.

∵点M为DE的中点,

∴DM=EM.

在△ADM和△NEM中,

∴△ADM≌△NEM.

∴AM=MN.

∴M为AN的中点.

(2)证明:如图2,

∵△BAD和△BCE均为等腰直角三角形,

∴AB=AD,CB=CE,∠CBE=∠CEB=45°.

∵AD∥NE,

∴∠DAE+∠NEA=180°.

∵∠DAE=90°,

∴∠NEA=90°.

∴∠NEC=135°.

∵A,B,E三点在同一直线上,

∴∠ABC=180°﹣∠CBE=135°.

∴∠ABC=∠NEC.

∵△ADM≌△NEM(已证),

∴AD=NE.

∵AD=AB,

∴AB=NE.

在△ABC和△NEC中,

∴△ABC≌△NEC.

∴AC=NC,∠ACB=∠NCE.

∴∠ACN=∠BCE=90°.

∴△ACN为等腰直角三角形.

(3)△ACN仍为等腰直角三角形.

证明:如图3,此时A、B、N三点在同一条直线上.

∵AD∥EN,∠DAB=90°,

∴∠ENA=∠DAN=90°.

∵∠BCE=90°,

∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.

∵A、B、N三点在同一条直线上,

∴∠ABC+∠CBN=180°.

∴∠ABC=∠NEC.

∵△ADM≌△NEM(已证),

∴AD=NE.

∵AD=AB,

∴AB=NE.

在△ABC和△NEC中,

∴△ABC≌△NEC.

∴AC=NC,∠ACB=∠NCE.

∴∠ACN=∠BCE=90°.

∴△ACN为等腰直角三角形.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为(  )

 

A.

7

B.

8

C.

6或8

D.

7或8

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,BE是△ABC的角平分线,DE∥BC,交AB于点D,∠A=126°,

∠DEB=14°,求∠BEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是  

查看答案和解析>>

科目:初中数学 来源: 题型:


如图是两个全等的含30°角的直角三角形.

(1)将其相等边拼在一起,组成一个没有重叠部分的平面图形,请你画出所有不同的拼接平面图形的示意图;

(2)若将(1)中平面图形分别印制在质地、形状、大小完全相同的卡片上,洗匀后从中随机抽取一张,求抽取的卡片上平面图形为轴对称图形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:


在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的(  )

 

A.

众数

B.

中位数

C.

平均数

D.

方差

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是(  )

作法:

①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;

②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;

③画射线OC,射线OC就是∠AOB的角平分线.

 

A.

ASA

B.

SAS

C.

SSS

D.

AAS

查看答案和解析>>

科目:初中数学 来源: 题型:


 下面的五边形、正方形等图形是轴对称图形,且对称轴条数最多的是

查看答案和解析>>

科目:初中数学 来源: 题型:


 化简:               .

查看答案和解析>>

同步练习册答案