精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在中,分别是的中点,,延长到点,使得,连接

1)求证:四边形BCEF是菱形;

2)若,求菱形BCEF的面积.

【答案】1)见解析;(218

【解析】

1)由DE分别是ABAC的中点,BE2DE,易证得EFBCEFBC,即可判定四边形BCFE是平行四边形,又由EFBE,即可证得四边形BCFE是菱形;

2)由∠BCF120°,易证得△EBC是等边三角形,又由CE6,即可求得菱形BCFE的高,继而求得菱形BCFE的面积.

解:(1)证明:∵DE分别是ABAC的中点,

∴DE∥BC2DE=BC

∵BE=2DEEF=BE

∴EF=BCEF∥BC

四边形BCFE是平行四边形,

∵BE=EF

四边形BCFE是菱形;

2)解:∵∠BEF=120°

∴∠EBC=60°

∴△EBC是等边三角形,

∴BE=BC=CE=6

过点EEG⊥BC于点G

∴EG=BEsin60°=6×=3

∴S菱形BCFE=BCEG=6×3=18

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1,点B(﹣9,10,AC∥x轴,点P时直线AC下方抛物线上的动点.

(1求抛物线的解析式;(2过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.

1)求甲、乙两种水果的单价分别是多少元?

2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合,DF=8

1)若PBC上的一个动点,当PA=DF时,求此时∠PAB的度数;

2)将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,ACBD交于点O,连接CD,如图②.

①探求CDO的形状,并说明理由;

②在图①中,若PBC的中点,连接FP,将等腰直角三角板ABC绕点B顺时针旋转,当旋转角α= 时,FP长度最大,最大值为 (直接写出答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数的图象的对称轴为直线.

1)求的值;

2)将函数的图象向右平移2个单位,得到新的函数图象

直接写出函数图象的表达式;

设直线轴交于点A,与y轴交于点B,当线段AB与图象只有一个公共点时,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,点Ay轴上,点Cx轴上,BCx轴,tanACO.延长AC到点D,过点DDEx轴于点G,且DGGE,连接CE,反比例函数yk0)的图象经过点B,和CE交于点F,且CFFE21.若△ABE面积为6,则点D的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织学生到恩格贝和康镇进行研学活动,澄澄老师在网上查得,分别位于学校的正北和正东方向,位于南偏东37°方向,校车从出发,沿正北方向前往地,行驶到15千米的处时,导航显示,在处北偏东45°方向有一服务区,且位于两地中点处.

1)求两地之间的距离;

2)校车从地匀速行驶1小时40分钟到达地,若这段路程限速100千米/时,计算校车是否超速?

(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.

1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DEAF于点M,观察发现:点MDE的中点.

下面是两位学生有代表性的证明思路:

思路1:不需作辅助线,直接证三角形全等;

思路2:不证三角形全等,连接BDAF于点H.…

请参考上面的思路,证明点MDE的中点(只需用一种方法证明);

2)如图2,在(1)的前提下,当∠ABE=135°时,延长ADEF交于点N,求的值;

3)在(2)的条件下,若=kk为大于的常数),直接用含k的代数式表示的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax+2)(x6)(a0)与x轴交于CD两点(点C在点D的左边),与y轴负半轴交于点A

1)若ACD的面积为16

①求抛物线解析式;

S为线段OD上一点,过Sx轴的垂线,交抛物线于点P,将线段SCSP绕点S顺时针旋转任意相同的角到SC1SP1的位置,使点CP的对应点C1P1都在x轴上方,C1CP1S交于点MP1Px轴交于点N.求的最大值;

2)如图2,直线yx12ax轴交于点B,点M在抛物线上,且满足∠MAB75°的点M有且只有两个,求a的取值范围.

查看答案和解析>>

同步练习册答案