【题目】如图,抛物线与轴交于点A(-1,0),顶点坐标为(1,n),与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①当时, ;②;③;④中,正确的是_______.
【答案】①③
【解析】①∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),对称轴直线是x=1,
∴该抛物线与x轴的另一个交点的坐标是(3,0),
∴根据图示知,当x>3时,y<0,故①正确;
②根据图示知,抛物线开口方向向下,则a<0.
∵对称轴x=- =1,∴b=-2a,∴3a+b=3a-2a=a<0,即3a+b<0,故②错误;
③∵抛物线与x轴的两个交点坐标分别是(-1,0),(3,0),
∴-1×3=-3,
∴ =-3,则a=- ,
∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),
∴2≤c≤3,∴-1≤-≤- ,即-1≤a≤-,故③正确;
④根据题意知,a=-,-=1,∴b=-2a=,∴n=a+b+c=,
∵2≤c≤3,∴≤≤4,即≤n≤4,故④错误;
综上所述,正确的说法有①③,
故答案为:①③.
科目:初中数学 来源: 题型:
【题目】如图,在边长均为l的小正方形网格纸中,△ABC的顶点,A、B、C均在格点上,O为直角坐标系的原点,点A(-1,0)在x轴上.
(1)以O为位似中心,将△ABC放大,使得放大后的△A1B1C1与△ABC的相似比为2:1,要求所画△A1B1C1与△ABC在原点两侧;
(2)分别写出B1、C1的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1 ,在矩形纸片中, ,折叠纸片使点落在边上的处,折痕为,过点作交于,连接
求证:四边形为菱形;
当点在边上移动时,折痕的端点也随之移动,若限定分别在边.上移动,求出点在边上移动的最大距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2-2mx+m2-1.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现.
如图1,和均为等边三角形,点、、均在同一直线上,连接.
①求证:.
②求的度数.
③线段、之间的数量关系为__________.
(2)拓展探究.
如图2,和均为等腰直角三角形,,点、、在同一直线上,为中边上的高,连接.
①请判断的度数为____________.
②线段、、之间的数量关系为________.(直接写出结论,不需证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:
v/(km/h) | 40 | 60 | 80 | 100 | 120 |
s/m | 2 | 4.2 | 7.2 | 11 | 15.6 |
(1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连接各点。
(2)利用图象验证刹车距离s(m)与车速v(km/h)是否有如下关系: 。
(3)求当s=9m时的车速v。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.
运用上述知识,解决下列问题:
(1)如果(a-2)+b+3=0,其中a、b为有理数,那么a= ,b= ;
(2)如果(2+)a-(1-)b=5,其中a、b为有理数,求a+2b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12 m,由此他就知道了A,B间的距离,有关他这次探究活动的描述错误的是( )
A. AB=24 m B. MN∥AB C. △CMN∽△CAB D. CM∶MA=1∶2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com