精英家教网 > 初中数学 > 题目详情
一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系:
(1)求抛物线的解析式;
(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?
(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?
(1)由题意可知抛物线的顶点坐标(4,6),
设抛物线的方程为y=a(x-4)2+6,
又因为点A(0,2)在抛物线上,
所以有2=a(0-4)2+6.
所以a=-
1
4

因此有:y=-
1
4
(x-4)2
+6.

(2)令y=4,则有4=-
1
4
(x-4)2
+6,
解得x1=4+2
2
,x2=4-2
2

|x1-x2|=4
2
>2,
∴货车可以通过;

(3)由(2)可知
1
2
|x1-x2|=2
2
>2,
∴货车可以通过.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB.
(1)求证:mn=-6;
(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,是一学生掷铅球时,铅球行进高度y(cm)的函数图象,点B为抛物线的最高点,则该同学的投掷成绩为______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线经过一直线y=3x-3与x轴、y轴的交点,并经过(2,5)点.
求:(1)抛物线的解析式;
(2)抛物线的顶点坐标及对称轴;
(3)当自变量x在什么范围内变化时,函数y随x的增大而增大?
(4)在坐标系内画出抛物线的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x-1交抛物线于点M、N两点,过线段MN上一点P作y轴的平行线交抛物线于点Q.
(1)求此抛物线的解析式及顶点D的坐标;
(2)问点P在何处时,线段PQ最长,最长为多少;
(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx-3a经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)已知点D(m,-m-1)在第四象限的抛物线上,求点D关于直线BC对称的点D'的坐标.
(3)在(2)的条件下,连接BD,问在x轴上是否存在点P,使∠PCB=∠CBD?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

竖直向上发射物体的高度h(m)满足关系式h=-5t2+v0•t,其中t(s)是物体运动的时间,v0(m/s)是物体被发射时的速度.某公园计划设计园内喷泉,喷水的最大高度要求达到15m,那么喷水的速度应该达到多少?(结果精确到0.01m/s)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:
①当x<0时,y1>y2
②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;
④使得M=1的x值是-
1
2
2
2

其中正确的是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

苹果熟了,从树上落下所经过的路程s与下落的时间t满足s=
1
2
gt2(g是不为0的常数),则s与t的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案