精英家教网 > 初中数学 > 题目详情
如图P是△ABC所在平面上一点.如果∠APB=∠BPC=∠CPA=120°,则点P就叫做费马点.
精英家教网
(1)当△ABC是等边三角形时,作尺规法作出△ABC费马点.(不要求写出作法,只要保留作图痕迹)
精英家教网
(2)已知:△ABC是等腰直角三角形,∠C=90°,AC=BC=
6
.四边形CDPE是正方形,CD在AC上,CE在BC上,P是△ABC的费马点.求:P点到AB的距离.
精英家教网
(3)已知:锐角△ABC,分别以AB,AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.
①求∠CPD的度数;
②求证:P点为△ABC的费马点.
精英家教网
分析:(1)用尺规法只要作出△ABC的外心即可.
(2)连接AP,BP,CP并延长交AB于Q点,先得△ACP≌△BCP,则CQ⊥AB,由边的关系求得P点到AB的距离.
(3)①由△ACE≌△ABD可求得∠CPD的度数.②先得△ADF∽△CFP,再证得△AFP∽△CDF,最后得∠APC=∠APB=120°,则P点为△ABC的费马点.
解答:解:(1)△ABC费马点如图所示:
精英家教网

(2)连接AP,BP,CP并延长交AB于Q点.
精英家教网
∵P是△ABC费马点,
∴∠APC=∠BPC=120°.
∵四边形CDPE是正方形,
∴∠PCD=∠PCE=45°.
∵CP=CP,
∴△ACP≌△BCP.
∴AP=BP.
∴CQ⊥AB.
∵∠APC=120°,
∴∠APQ=60°.
∴PQ=
AQ
3

∵△ABC是等腰直角三角形,
∴AB=
2
AC=
2
×
6
=2
3

AQ=
AB
2
=
3

PQ=
3
3
=1


(3)①∵△ACE≌△ABD,
∵∠1=∠2,
∵∠3=∠4,
∴∠CPD=∠5=60°.
②∵△ADF∽△CFP,
AF
PF
=
DF
CF

∵∠AFP=∠CFD,
∴△AFP∽△CDF.
∴∠APF=∠ACD=60°.
∴∠APC=∠CPD+∠APF=120°.
∴∠BPC=120°.
∴∠APB=360°-∠BPC-∠APC=120°.
∴P点为△ABC的费马点.
精英家教网
点评:本题考查了相似三角形的判定与性质,题目较为复杂,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图P是△ABC所在平面上一点.如果∠APB=∠BPC=∠CPA=120°,则点P就叫做费马点.

(1)当△ABC是等边三角形时,作尺规法作出△ABC费马点.(不要求写出作法,只要保留作图痕迹)

(2)已知:△ABC是等腰直角三角形,∠C=90°,AC=BC=数学公式.四边形CDPE是正方形,CD在AC上,CE在BC上,P是△ABC的费马点.求:P点到AB的距离.

(3)已知:锐角△ABC,分别以AB,AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.
①求∠CPD的度数;
②求证:P点为△ABC的费马点.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:

(1)根据△ABC所在位置,写出A、B、C三点的坐标;

(2)将△ABC向左平移6个单位?再向上平移5个单位,则平移后各个顶点的坐标是多少?在图中画出平移后的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图P是△ABC所在平面上一点.如果∠APB=∠BPC=∠CPA=120°,则点P就叫做费马点.

(1)当△ABC是等边三角形时,作尺规法作出△ABC费马点.(不要求写出作法,只要保留作图痕迹)

(2)已知:△ABC是等腰直角三角形,∠C=90°,AC=BC=.四边形CDPE是正方形,CD在AC上,CE在BC上,P是△ABC的费马点.求:P点到AB的距离.

(3)已知:锐角△ABC,分别以AB,AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.

①求∠CPD的度数;

②求证:P点为△ABC的费马点.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省宁波市鄞州区中考数学模拟试卷(解析版) 题型:解答题

(2010•鄞州区模拟)如图P是△ABC所在平面上一点.如果∠APB=∠BPC=∠CPA=120°,则点P就叫做费马点.

(1)当△ABC是等边三角形时,作尺规法作出△ABC费马点.(不要求写出作法,只要保留作图痕迹)

(2)已知:△ABC是等腰直角三角形,∠C=90°,AC=BC=.四边形CDPE是正方形,CD在AC上,CE在BC上,P是△ABC的费马点.求:P点到AB的距离.

(3)已知:锐角△ABC,分别以AB,AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.
①求∠CPD的度数;
②求证:P点为△ABC的费马点.

查看答案和解析>>

同步练习册答案