【题目】对于平面上A、B两点,给出如下定义:以点A为中心,B为其中一个顶点的正方形称为点A、B的“领域”.
(1)已知点A的坐标为(﹣1,1),点B的坐标为(3,3),顶点A、B的“领域”的面积为 .
(2)若点A、B的“领域”的正方形的边与坐标轴平行或垂直,回答下列问题:
①已知点A的坐标为(2,0),若点A、B的“领域”的面积为16,点B在x轴上方,求B点坐标;
②已知点A的坐标为(2,m),若在直线l:y=﹣3x+2上存在点B,点A、B的“领域”的面积不超过16,直接写出m的取值范围.
【答案】(1)40;(2)①B(4,2)或B(0,2);②﹣12≤m≤4.
【解析】
(1)由两点距离公式可求AB长,由正方形的性质可求解;
(2)①分两种情况,由两点距离公式和正方形性质可求解;
②由题意可得BM=AM,可得m=4﹣4a,或m=﹣2a,由正方形的性质可求a的取值范围,即可求解.
(1)∵点A的坐标为(﹣1,1),点B的坐标为(3,3),
∴AB=,
由题意可知,AB是正方形对角线的一半,
∴正方形的边长为2,
∴正方形的面积为40,
∴顶点A、B的“领域”的面积为40;
故答案为40;
(2)①如图,
∵点A、B的“领域”的正方形的边与坐标轴平行或垂直,
∴AB与x轴的所成锐角为45°,
当点B在A左侧,设B(2﹣a,a),
∴AB=,
∵点A、B的“领域”的面积为16,
∴16=,
∴a=2,
∴点B(0,2),
当点B在点A右侧,设B'(2+a,a)
∴AB'=a,
∵点A、B的“领域”的面积为16,
∴16=,
∴a=2,
∴点B(4,2),
综上所述:B(4,2)或B(0,2);
②如图2,过点B作BM⊥AM,
∵∵点A、B的“领域”的正方形的边与坐标轴平行或垂直,
∴AB与直线x=2的所成锐角为45°,
∴BM=AM,
设点B(a,﹣3a+2),
∴AM=|m+3a﹣2|,BM=|2﹣a|
∴AB=|2﹣a|,
∵点A、B的“领域”的面积不超过16,
∴≤16
∴0≤a≤4,
∵BM=AM,
∴|m+3a﹣2|=|2﹣a|
∴m=4﹣4a,或m=﹣2a,
∴﹣12≤m≤4,或﹣8≤m≤0,
综上所述:﹣12≤m≤4.
科目:初中数学 来源: 题型:
【题目】为迎接2020年中考,某中学对全校九年级学生进行了一次数学期末模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了多少名学生;
(2)将条形统计图补充完整;
(3)若该中学九年级共有860人参加了这次数学考试,估计该校九年级共有多少名学生的数学成绩可以达到优秀?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知点的横坐标为2,将点向右平移2个单位,再向下平移2个单位得到点,且、两点均在双曲线上.
(1)求反比例函数的解析式.(2)若直线于反比例函数的另一交点为,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究:
操作发现:如图1,在中,,以点为中心,把顺时针旋转,得到;再以点为中心,把逆时针旋转,得到.连接.则与的位置关系为平行;
探究证明:如图2,当是锐角三角形,时,将按照(1)中的方式,以点为中心,把顺时针旋转,得到;再以点为中心,把逆时针旋转,得到.连接,
①探究与的位置关系,写出你的探究结论,并加以证明;
②探究与的位置关系,写出你的探究结论,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A、B,直线x=k与直线y=﹣k交于点C,
(1)求直线l与y轴的交点坐标;
(2)横、纵坐标都是整数的点叫做整点.记线段AB、BC、CA围成的区域(不含边界)为W.
①当k=1时,区域内的整点有 个,其坐标为 .
②当k=2时,区域W内的整点有 个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,.点由点出发沿方向向点匀速运动,同时点由点出发沿方向向点匀速运动,它们的速度均为.作于,连接,设运动时间为,解答下列问题:
(1)设的面积为,求与之间的函数关系式,的最大值是 ;
(2)当的值为 时,是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】木工师傅可以用角尺测量并计算出圆的半径r.用角尺的较短边紧靠⊙O,角尺的顶点B(∠B=90°),并使较长边与⊙O相切于点C.
(1)如图,AB<r,较短边AB=8cm,读得BC长为12cm,则该圆的半径r为多少?
(2)如果AB=8cm,假设角尺的边BC足够长,若读得BC长为acm,则用含a的代数式表示r为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(x>0)与直线AB交于点A(2,3),直线AB与x轴交于点B(4,0),过点B作x轴的垂线BC交反比例函数的图象于点C,在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,则平行四边形ABCD的面积为____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com