精英家教网 > 初中数学 > 题目详情
16.计算:(2017-π)0+(-$\frac{1}{3}$)-1+|$\sqrt{3}$-1|-2sin60°.

分析 首先计算乘方和乘法,然后从左向右依次计算,求出算式的值是多少即可.

解答 解:(2017-π)0+(-$\frac{1}{3}$)-1+|$\sqrt{3}$-1|-2sin60°
=1-3+$\sqrt{3}$-1-2×$\frac{\sqrt{3}}{2}$
=-$\sqrt{3}$

点评 此题主要考查了实数的运算,零指数幂、负整数指数幂以及特殊角的三角函数值的求法,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.问题提出:我们知道,等式具有性质:(1)等式两边同时加或减同一个代数式,所得结果仍是等式;(2)等式两边同时乘同一个数或除以同一个不为0的数,所得结果仍是等式.那么任意 一个三阶幻方是否也有类似的性质?
问题探究:为了探究上述问题,我们不妨从简单的三阶幻方①入手;
探究一
如图②,九个数2,3,4,5,6,7,8,9,10已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方②,所以构成三阶幻方①的九个数同时加1,所得到的九个数仍可构成一个三阶幻方.
如图③,九个数-2,-1,0,1,2,3,4,5,6已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方③,所以构成三阶幻方①的九个数同时减3,所得到的九个数仍可构成一个三阶幻方.
     请把九个数0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5填到图④的方格中,使得每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方④,所以构成三阶幻方①的九个数同时减0.5,所得到的九个数仍可构成一个三阶幻方.
1.根据探究一可得任意三阶幻方的性质(1):构成三阶幻方的九个数,每个数同时加或减同一个数,所得到的九个数仍能构成三阶幻方.
探究二:
如图⑤,九个数3,6,9,12,15,18,21,24,27已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方⑤.所以构成三阶幻方①的九个数同时乘3,所得到的九个数仍可构成一个三阶幻方.
如图⑥,九个数0.5,1,1.5,2,2.5,3,3.5,4,4.5已填到方格中,显然每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方⑥.所以构成三阶幻方①的九个数同时除以2,所得到的九个数仍可构成一个三阶幻方.
     请把九个数-2,-4,-6,-8,-10,-12,-14,-16,-18填到图⑦的方格中,使得每行、每列、每条对角线上的三个数之和都相等,构成了一个三阶幻方⑦.所以构成三阶幻方①的九个数同时乘-2,所得到的九个数仍可构成一个三阶幻方.
2.根据探究二可得任意三阶幻方的性质(2):构成三阶幻方的九个数,每个数同时乘同一个数或除以同一个不为0的数,所得到的九个数仍能构成三阶幻方..
性质应用:
3,5,7,9,11,13,15,17,19这九个数能否构成三阶幻方?请用三阶幻方的性质进行说明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在△ABC中,AB=AC,过A作AD⊥AB交BC于点D,过B作BE⊥AC,交CA延长线于点E,过D作DF⊥AC,垂足为F.若EF=3$\sqrt{3}$.BC=6$\sqrt{2}$.则tan∠C=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.小明想从“天猫”某网店购买计算器,经查询,某品牌A型号计算器的单价比B型号计算器的单价多12元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A,B两种型号计算器的单价分别是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.[阅读材料,获取新知]
在航空、航海等领域我们经常用距离和角度来确定点的位置.规定如下:在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,在选定一个单位长度和角度的正方向(通常取逆时针方向).对于平面内任何一点M,用ρ表示线段OM(有时也用r表示),θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系.通常情况下,M的极径坐标单位为1(长度单位),极角坐标单位为rad(或°).
例如:如图①,点M到点O的距离为5个单位长度,OM与Ox的夹角70°(Ox的逆时针方向),则点M的极坐标为(5,70°);同理,点N到点O的距离为3个单位长度,ON与Ox的夹角50°(Ox的顺时针方向),则点N的极坐标为(3,-50°).
[利用新知,解答问题]
请根据以上信息,回答下列问题:
如图②,已知过点O的所有射线等分圆周且相邻两射线的夹角为15°.
(1)点A的极坐标是(4,75°);点D的极坐标是(3,-30);
(2)请在图②中标出点B(5,45°),点E(2,-90°);
(3)怎样从点B运动到点C?
小明设计的一条路线为:点B→(4,45°)→(3,45°)→(3,30°)→点C.
请你设计与小明不同的一条路线,也可以从点B运动到点C.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)$\sqrt{64}$+$\frac{\root{3}{-27}}{2}$-$\sqrt{(-7)^{2}}$
(2)解方程$\left\{\begin{array}{l}{x-2y=5}\\{3x+y=1}\end{array}\right.$
(3)解方程$\left\{\begin{array}{l}{4b+a=15}\\{3a-4b=-3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,Rt△ABC内接于⊙O,∠ACB=90°,点M为AB中点,点D在弧$\widehat{BC}$上,连接CD、BD,点G是CD的中点,连结MG.
(1)求证:MG⊥CD;
(2)如图2,若AC=BC,AD平分∠BAC,AD与BC交于点E,延长BD,与AC的延长线交于点F,求证:CF=CE;
(3)在(2)的条件下,若OG•DE=3(2-$\sqrt{2}$),求⊙O的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某中学为了响应国家发展足球的战略方针,激发学生对足球的兴趣,特举办全员参与的“足球比赛”,赛后,全校随机抽查部分学生,其成绩(百分制)整理分成5组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:
成绩频数分布表
组别成绩(分)频数
A50≤x<606
B60≤x<70m
C70≤x<8020
D80≤x<9036
E90≤x<100n
(1)频数分布表中的m=4,n=18;
(2)样本中位数所在成绩的级别是D,扇形统计图中,E组所对应的扇形圆心角的度数是108;
(3)若该校共有2000名学生,请你估计体育综合测试成绩不少于80分的大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解方程:4x+1=2(3-x)

查看答案和解析>>

同步练习册答案