精英家教网 > 初中数学 > 题目详情

【题目】如图,放置的OAB1B1A1B2B2A2B3,都是边长为2的等边三角形,边AOY轴上,点B1B2B3都在直线y=x上,则点A2019的坐标为__________________

【答案】

【解析】

根据题意得出,直线AA的解析式为yx2,进而得出AAAA坐标,进而得出坐标变化规律,进而求出答案.

如图,过Bx轴作垂线BC,垂足为C

由题意得:A02),AOAB,∠BOC30°

CO

B的横坐标为,则A的横坐标为

连接AA,可知所有三角形顶点都在直线AA上,

∵点B B B ……都在直线yxAO2

∴直线AA 的解析式为yx2

y×23

A3

同理可得:A的横坐标为:2

y×224

A 24

A35

……

Annn+2),

A201920192021),

故答案为:(20192021).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=x+m2+k的图象,其顶点坐标为M1﹣4

1)求出图象与x轴的交点AB的坐标;

2)在二次函数的图象上是否存在点P,使SPAB=SMAB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )

A.任意给定一个正方形,一定存在另一个正方形,它的周长和面积分别是已知正方形周长和面积的一半

B.任意给定一个正方形,一定存在另一个正方形,它的周长和面积分别是已知正方形周长和面积的2

C.任意给定一个矩形,一定存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半

D.任意给定一个矩形,一定存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.

1求∠CDE的度数;

2求证:DF是⊙O的切线;

3若AC=2DE,求tan∠ABD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为迎接年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面积是乙队每天能改造面积的倍,并且在独立完成面积为的改造时,甲队比乙队少用.

1)求甲、乙两工程队每天能完成塑胶改造的面积;

2)设甲工程队施工天,乙工程队施工天,刚好完成改造任务,求的函数解析式;

3)若甲队每天改造费用是万元,乙队每天改造费用是万元,且甲、乙两队施工的总天数不超过天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC沿BC边上的中线AD平移到A'B'C'的位置,已知ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于(  )

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1BC是⊙O的直径,点A在⊙O上,ADBC,垂足为DBE分别交ADAC于点FG

1)判断△FAG的形状,并说明理由;

2)如图2,若点E和点ABC的两侧,BEAC的延长线交于点GAD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;

3)在(2)的条件下,若BG26BDDF7,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】绿色植物销售公司打算销售某品种的赏叶植物,在针对这种赏叶植物进行市场调查后,绘制了以下两张函数图象.其中图①为一条直线,图②为一条抛物线,且抛物线顶点为(61),请根据图象解答下列问题:

1)如果公司在3月份销售这种赏叶植物,单株获利多少元;

2)请直接写出图象①中直线的解析式;

3)请你求出公司在哪个月销售这种赏叶植物,单株获利最大?(备注:单株获利=单株售价﹣单株成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线C1的图象与x轴交A(30)B(10)两点,与y轴交于点C(03)D为抛物线的顶点.

1)求抛物线C1的解析式;

2)将抛物线C1关于直线x1对称后的抛物线记为C2,将抛物线C1关于点B对称后的抛物线记为C3,点E为抛物线C3的顶点,在抛物线C2的对称轴上是否存在点F,使得BEF为等腰三角形?若存在请求出点F的坐标,若不存在请说明理由.

查看答案和解析>>

同步练习册答案