【题目】(本题满分8分)如图在10×10的正方形网格中,△ABC 的顶点在边长为1的小正方形的顶点上.
(1)计算AC,AB,BC的长度,并判定△ABC 的形状;
(2)若在网格所在的坐标平面内的点A,C的坐标分别为(0,0),(-1,1).请你在图中找出点D,使以A、B、C、D四个点为顶点的四边形是平行四边形,直接写出满足条件的D点的坐标.
【答案】(1)AC=,BC=,AB=,△ABC为直角三角形;
(2)(1,5)或(3,3)或(-3,-3)
【解析】试题分析:(1)利用勾股定理可分别求得AC、BC、AB的长,再利用勾股定理的逆定理可判定△ABC为直角三角形;
(2)分别过A作BC的平行线,过B作AC的平行线,过C作AB的平行线,这些线的交点即为满足条件的点D,则可求得答案.
试题解析:(1)∵小正方形的边长为1,
∴AC==,BC==,AB==,
∴AC2+BC2=AB2,
∴△ABC为直角三角形;
(2)∵A、C的坐标分别为(0,0),(1,1),
∴点C为坐标原点,
如图,分别过A作BC的平行线,过B作AC的平行线,过C作AB的平行线,
∴满足条件的点D的坐标为(3,3)或(1,5)或(3,3).
科目:初中数学 来源: 题型:
【题目】已知二次函数(是常数).
(1)求证:不论为何值,该函数的图象与x轴没有公共点;
(2)把该函数的图象沿轴向下平移多少个单位长度后,得到的函数的图象与轴只有一个公共点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知在△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数).
(2)已知在△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验室里,水平桌面上有甲、乙、丙三个相 同高度的圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在10cm高度处连通(即管子底部离容器底10cm),现三个容器中,只有乙中有水,水位高4cm,如图所示.若每分钟同时向甲和丙注入相同量的水,开始注水1分钟,甲的水位上升3cm.则开始注入 分钟水量后,甲的水位比乙高1cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算(x2-3x+n)(x2+mx+8)的结果中不含x2和x3的项,则m,n的值为( )
A. m=3,n=1 B. m=0,n=0 C. m=-3,n=-9 D. m=-3,n=8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com