精英家教网 > 初中数学 > 题目详情
(2013•河池)如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是
5
5
分析:设BE=x,则EC=4-x,先利用等角的余角相等得到∠BAE=∠FEC,则可判断Rt△ABE∽Rt△ECF,利用相似比可表示出FC=
x(4-x)
4
,则DF=4-FC=4-
x(4-x)
4
=
1
4
x2-x+4=
1
4
(x-2)2+3,所以x=2时,DF有最小值3,而AF2=AD2+DF2,即DF最小时,AF最小,AF的最小值为
42+32
=5.
解答:解:设BE=x,则EC=4-x,
∵AE⊥EF,
∴∠AEF=90°,
∴∠AEB+∠FEC=90°,
而∠AEB+∠BEA=90°,
∴∠BAE=∠FEC,
∴Rt△ABE∽Rt△ECF,
AB
EC
=
BE
FC
,即
4
4-x
=
x
FC
,解得FC=
x(4-x)
4

∴DF=4-FC=4-
x(4-x)
4
=
1
4
x2-x+4=
1
4
(x-2)2+3
当x=2时,DF有最小值3,
∵AF2=AD2+DF2
∴AF的最小值为
42+32
=5.
故答案为:5.
点评:本题考查了相似三角形的判定与性质:有两组对应边的比相等,并且它们的夹角也相等,那么这两个三角形相似;相似三角形的对应角相等,对应边的比相等.也考查了正方形的性质以及二次函数的最值问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•河池)如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河池)如图所示的几何体,其主视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河池)如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河池)如图,AB为⊙O的直径,C为⊙O外一点,过点C作的⊙O切线,切点为B,连结AC交⊙O于D,∠C=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是(  )

查看答案和解析>>

同步练习册答案