精英家教网 > 初中数学 > 题目详情
(2002•武汉)如图,以△ABC的边AB为直径作⊙O交BC于D,过D作⊙O的切线交AC于E,要使得DE⊥AC,则△ABC的边必须满足的条件是   
【答案】分析:连接OD,则OD⊥BC;要使DE⊥AC,只需OD∥AC,则需∠C=∠ODB,而OD=OB由此即可推出AC=AB.
解答:解:如图,连接OD,则OD⊥DE;
∵DE⊥AC,
∴OD∥AC,
∴∠C=∠ODB;
∵OD=OB,
∴∠ODB=∠B,
∴∠C=∠B,
∴AC=AB.
故答案为:AC=AB.
点评:此题综合运用了切线的性质定理、等边对等角、平行线的判定方法和等角对等边的性质等知识解题.
练习册系列答案
相关习题

科目:初中数学 来源:2011年广东省深圳市第二次十校联考中考数学模拟试卷(解析版) 题型:解答题

(2002•武汉)如图,已知:在直角坐标系中.点E从O点出发,以1个单位/秒的速度沿x轴正方向运动,点F从O点出发,以2个单位/秒的速度沿y轴正方向运动.B(4,2),以BE为直径作⊙O1

(1)若点E、F同时出发,设线段EF与线段OB交于点G,试判断点G与⊙O1的位置关系,并证明你的结论;
(2)在(1)的条件下,连接FB,几秒时FB与⊙O1相切?
(3)若点E提前2秒出发,点F再出发.当点F出发后,点E在A点的左侧时,设BA⊥x轴于点A,连接AF交⊙O1于点P,试问AP•AF的值是否会发生变化?若不变,请说明理由并求其值;若变化,请求其值的变化范围.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(12)(解析版) 题型:解答题

(2002•武汉)如图,已知:在直角坐标系中.点E从O点出发,以1个单位/秒的速度沿x轴正方向运动,点F从O点出发,以2个单位/秒的速度沿y轴正方向运动.B(4,2),以BE为直径作⊙O1

(1)若点E、F同时出发,设线段EF与线段OB交于点G,试判断点G与⊙O1的位置关系,并证明你的结论;
(2)在(1)的条件下,连接FB,几秒时FB与⊙O1相切?
(3)若点E提前2秒出发,点F再出发.当点F出发后,点E在A点的左侧时,设BA⊥x轴于点A,连接AF交⊙O1于点P,试问AP•AF的值是否会发生变化?若不变,请说明理由并求其值;若变化,请求其值的变化范围.

查看答案和解析>>

科目:初中数学 来源:2009年上海市长宁区中考数学一模试卷(解析版) 题型:解答题

(2002•武汉)如图,已知:在直角坐标系中.点E从O点出发,以1个单位/秒的速度沿x轴正方向运动,点F从O点出发,以2个单位/秒的速度沿y轴正方向运动.B(4,2),以BE为直径作⊙O1

(1)若点E、F同时出发,设线段EF与线段OB交于点G,试判断点G与⊙O1的位置关系,并证明你的结论;
(2)在(1)的条件下,连接FB,几秒时FB与⊙O1相切?
(3)若点E提前2秒出发,点F再出发.当点F出发后,点E在A点的左侧时,设BA⊥x轴于点A,连接AF交⊙O1于点P,试问AP•AF的值是否会发生变化?若不变,请说明理由并求其值;若变化,请求其值的变化范围.

查看答案和解析>>

科目:初中数学 来源:2002年湖北省武汉市中考数学试卷(解析版) 题型:解答题

(2002•武汉)如图,已知:在直角坐标系中.点E从O点出发,以1个单位/秒的速度沿x轴正方向运动,点F从O点出发,以2个单位/秒的速度沿y轴正方向运动.B(4,2),以BE为直径作⊙O1

(1)若点E、F同时出发,设线段EF与线段OB交于点G,试判断点G与⊙O1的位置关系,并证明你的结论;
(2)在(1)的条件下,连接FB,几秒时FB与⊙O1相切?
(3)若点E提前2秒出发,点F再出发.当点F出发后,点E在A点的左侧时,设BA⊥x轴于点A,连接AF交⊙O1于点P,试问AP•AF的值是否会发生变化?若不变,请说明理由并求其值;若变化,请求其值的变化范围.

查看答案和解析>>

同步练习册答案