精英家教网 > 初中数学 > 题目详情
10.如图,在Rt△ABC中,∠C=90°,AB=15,BC=9.点P、Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.
(1)求证:PQ∥AB;
(2)若点D在∠BAC的平分线上,求CP的长;
(3)若△PDE与△ABC重叠部分图形的周长为T.若T=17,求CP的长.

分析 (1)先根据勾股定理求出AC的长,再由相似三角形的判定定理得出△PQC∽△BAC,由相似三角形的性质得出∠CPQ=∠B,由此可得出结论;
(2)连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=12-4x,故可得出x的值,进而得出结论;
(3)当点E在AB上时,根据等腰三角形的性质求出x的值,再分0<x≤$\frac{9}{8}$;$\frac{9}{8}$<x<3两种情况进行分类讨论.

解答 (1)证明:∵在Rt△ABC中,AB=15,BC=9,
∴AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=$\sqrt{1{5}^{2}-{9}^{2}}$=12.
∵$\frac{PC}{BC}$=$\frac{3x}{9}$=$\frac{x}{3}$,$\frac{QC}{AC}$=$\frac{4x}{12}$=$\frac{x}{3}$,
∴$\frac{PC}{BC}$=$\frac{QC}{AC}$.
∵∠C=∠C,
∴△PQC∽△BAC,
∴∠CPQ=∠B,
∴PQ∥AB;

(2)解:连接AD,
∵PQ∥AB,
∴∠ADQ=∠DAB.
∵点D在∠BAC的平分线上,
∴∠DAQ=∠DAB,
∴∠ADQ=∠DAQ,
∴AQ=DQ.
在Rt△CPQ中,PQ=5x,
∵PD=PC=3x,
∴DQ=2x.
∵AQ=12-4x,
∴12-4x=2x,解得x=2,
∴CP=3x=6.

(3)解:当点E在AB上时,
∵PQ∥AB,
∴∠DPE=∠PGB.
∵∠CPQ=∠DPE,∠CPQ=∠B,
∴∠B=∠PGB,
∴PB=PG=5x,
∴3x+5x=9,解得x=$\frac{9}{8}$.
①当0<x≤$\frac{9}{8}$时,T=PD+DE+PE=3x+4x+5x=12x,此时0<T≤$\frac{27}{2}$;
②当$\frac{9}{8}$<x<3时,设PE交AB于点G,DE交AB于F,作GH⊥PQ,垂足为H,
∴HG=DF,FG=DH,Rt△PHG∽Rt△PDE,
∴$\frac{GH}{ED}$=$\frac{PG}{PE}$=$\frac{PH}{PD}$.
∵PG=PB=9-3x,
∴$\frac{GH}{4x}$=$\frac{9-3x}{5x}$=$\frac{PH}{3x}$,
∴GH=$\frac{4}{5}$(9-3x),PH=$\frac{3}{5}$(9-3x),
∴FG=DH=3x-$\frac{3}{5}$(9-3x),
∴T=PG+PD+DF+FG=(9-3x)+3x+$\frac{4}{5}$(9-3x)+[3x-$\frac{3}{5}$(9-3x)]
=$\frac{12}{5}$x+$\frac{54}{5}$,
此时,$\frac{27}{2}$<T<18.
∴当0<x<3时,T随x的增大而增大,
∴T=12时,即12x=12,解得x=1;
T=16时,即$\frac{12}{5}$x+$\frac{54}{5}$=16,解得x=$\frac{13}{6}$.
∵12≤T≤16,
∴x的取值范围是1≤x≤$\frac{13}{6}$.

点评 本题考查的是几何变换综合题,涉及到勾股定理、相似三角形的判定与性质,角平分线,方程,一次函数等知识,在解答(3)时能正确进行分类讨论是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.
(1)发现:如图1,当E点旋转到DA的延长线上时,△ABE与△ADG的面积关系是:△ABE的面积=△ADG的面积;
(2)引申:当正方形AEFG旋转任意一个角度时,△ABE与△ADG的面积关系是:△ABE的面积=△ADG的面积;
并证明你的结论;
(3)如图3,四边形ABMN、四边形DEAC、四边形BFGC均为正方形,则S△ABC、S△AEN、S△BMF、S△DCG的关系是S△ABC=S△AEN=S△BMF=S△DCG
(4)运用:某小区中有一块空地,要在其中建三个正方形健身场所(如图3),其余空地修成草坪.若已知其中一个正方形的边长为5m,另一个正方形的边长为4m,则草坪的最大面积是30m2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:($\frac{1}{2}$)-1-(2017-π)0-2sin45°+|$\sqrt{2}$-1|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.先化简,再求值:($\frac{2x}{x-y}$+$\frac{x}{y-x}$)÷$\frac{x}{{x}^{2}-{y}^{2}}$,其中x=2017,y=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,一次函数y=kx+b与反比例函数y=$\frac{m}{x}$的图象交于A(2,4)、B(-4,n)两点.
(1)分别求出一次函数与反比例函数的表达式;
(2)根据所给条件,请直接写出不等式kx+b>$\frac{m}{x}$的解集;
(3)过点B作BC⊥x轴,垂足为C,连接AC,求S△ABC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:

(1)扇形统计图中m的值为20,n的值为25;
(2)补全条形统计图;
(3)在选择B类的学生中,甲、乙、丙三人在乒乓球项目表现突出,现决定从这三名同学中任选两名参加市里组织的乒乓球比赛,选中甲同学的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.在Rt△ABC中,∠C=90°,∠B=70°,点D在边AB上,△ABC绕点D旋转后点B与点C重合,点C落在点C′,
那么∠ACC′的度数是50°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭,8月份比7月份节约用水情况统计:
节水量(m30.20.30.40.5
家庭数(个)1234
那么这10个家庭8月份比7月份的节水量的平均数是(  )
A.0.5m3B.0.4m3C.0.35m3D.0.3m3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.若(x-4)x+105=1,则x的值为-105或5或3.

查看答案和解析>>

同步练习册答案