精英家教网 > 初中数学 > 题目详情
4.如图是由若干个正方体组成的几何体的俯视图,数字表示该位置上小正方体的个数,则该几何体左视图可能是(  )
A.B.C.D.

分析 由已知条件可知,左视图有2列,每列小正方形数目分别为1,2.据此可画出图形.

解答 解:如图所示:
该几何体左视图可能是:

故选:B.

点评 本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.【阅读新知】
三角形中任何一边的平方等于其它两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.
即:如图1,在△ABC中,已知AB=c,BC=a,CA=b,则有:
a2=b2+c2-2bccosA,b2=a2+c2-2accosB,c2=a2+b2-2abcosC
利用这个正确结论可求解下列问题:
例在△ABC中,已知a=2$\sqrt{3}$,b=2$\sqrt{2}$,c=$\sqrt{6}$$+\sqrt{2}$,求∠A.
解:∵a2=b2+c2-2bccosA,
cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{(2\sqrt{2})^{2}+(\sqrt{6}+\sqrt{2})^{2}-(2\sqrt{3})^{2}}{2×2\sqrt{2}×(\sqrt{6}+\sqrt{2})}$=$\frac{1}{2}$.
∴∠A=60°.
【应用新知】
(1)选择题:在△ABC中,已知b=ccosA,a=csinB,那么△ABC是C.
A.等边三角形   B.等腰三角形   C.等腰直角三角形   D.直角三角形
(2)如图2,某客轮在A处看港口D在客轮的北偏东50°,A处看灯塔B在客轮的北偏西30°,距离为2$\sqrt{3}$海里,客轮由A处向正北方向航行到C处时,再看港口D在客轮的南偏东80°,距离为6海里.求此时C处到灯塔B的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是(  )
A.95°B.90°C.85°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,正方形EFGH的边长为6厘米,长方形ABCG的长为8厘米,求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,正方形ABCD中,P为BC上一点,PE⊥BD于E,PF⊥AD于F,连接EF、CF.
(1)求证:∠FCE=45°;
(2)若CF交BD于G,PF交BD于H,若H为PF中点,BC=12,求EG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在一个不透明的袋子中,装有2个红球和1个白球,这些球除了颜色外都相同.如果第一次随机摸出一个小球(不放回),充分搅匀后,第二次再从剩余的两球中随机摸出一个小球,求两次都摸到红球的概率.(用树状图或列表法求解)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.阅读以下计算程序:

(1)当x=1000时,输出的值是多少?
(2)问经过二次输入才能输出y的值,求x0的取值范围?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在平面直角坐标系中有一菱形OABC且∠A=120°,点O、B在y轴上,OA=1,现在把菱形向右无滑动翻转,每次翻转60°,点B的落点依次为B1、B2、B3…,连续翻转2017次,则B2017的坐标为(  )
A.(1345,0)B.(1345,$\frac{\sqrt{3}}{2}$)C.(1345.5,0)D.(1345.5,$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,矩形ABCD,将它分别沿AE和AF折叠,恰好使点B,C落到对角线AC上点M,N处,已知MN=2,NC=1,则矩形ABCD的面积是9+2$\sqrt{6}$.

查看答案和解析>>

同步练习册答案