精英家教网 > 初中数学 > 题目详情

【题目】如图,已知线段,点为线段外一点,且

1)请用直尺(不带刻度)和圆规在线段上找一点,使得的周长为 (作图不必写作法,但要保留作图痕迹);

2)在(1)的条件下,若,当是等腰三角形时,求的面积.

【答案】(1)详见解析;(2)1512

【解析】

1)由,得到

所以确定,即作的垂直平分线即可得到答案.

解:(1)如图,作垂直平分线与交点即为点;(2)为等腰三角形,分三种情况:,依次画出符合题意的图形,分析三角形的各边长,作出等腰三角形的高利用直角三角形的性质可得答案.

2)①如图1,∵,∴中点,所以

,∴,∴

2如图2,∴,作,∴

,∴

③如图3,与②中三角形全等,所以面积也为12

综上所述,当是等腰三角形时,的面积为1512

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,C的一定点,D是弦AB上的一定点,P是弦CB上的一动点.连接DP,将线段PD绕点P顺时针旋转得到线段.射线交于点Q.已知,设PC两点间的距离为xcmPD两点间的距离PQ两点的距离为.

小石根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行了探究,下面是小石的探究过程,请补充完整:

1)按照下表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值:

x/cm

0

1

2

3

4

5

6

/cm

4.29

3.33

1.65

1.22

1.50

2.24

/cm

0.88

2.84

3.57

4.04

4.17

3.20

0.98

2)在同一平面直角坐标系xOy中,描出补全后的表中各组数据所对应的点,并画出函数的图象;

3)结合函数图象,解决问题:连接DQ,当△DPQ为等腰三角形时,PC的长度约为_____cm.(结果保留一位小数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 AB 两种型号的设备,其中每台的价格,月处理污水量如下表:

A

B

价格(万元/台)

a

b

处理污水量(吨/月)

240

200

经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 A 型设备比购买 3 B 型设备少 6 万元.

1)求 ab 的值;

2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司 有哪几种购买方案;

3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节 约资金,请你为治污公司设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】良好的坐姿习惯有利于青少年骨骼生长,有利于身体健康,那么首先要有正确的写字坐姿,身体上半部坐直,头部端正、目视前方,两手放在桌面上,两腿平放,胸膛挺起,理想状态下,如图①,将图①中的眼睛记为点,腹部记为点,笔尖记为点,且与桌面沿的交点记为点,已知,点的距离为23cm

1)求的度数

2)老师发现小亮同学写字姿势不正确,眼睛倾斜到图2的点,点恰好在的垂直平分线上,且,于是要求其纠正为正确的姿势,求眼睛所在的位置上升的距离(结果精确到1cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】参照学习函数的过程方法,探究函数的图像与性质,因为,即,所以我们对比函数来探究列表:

-4

-3

-2

-1

1

2

3

4

1

2

4

-4

-2

-1

2

3

5

-3

-2

0

描点:在平面直角坐标系中以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点如图所示:

1)请把轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;

2)观察图象并分析表格,回答下列问题:

①当时,的增大而______;(“增大”或“减小”)

的图象是由的图象向______平移______个单位而得到的;

③图象关于点______中心对称.(填点的坐标)

3)函数与直线交于点,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知RtABC中,∠ACB90°EAB上一点,以AE为直径作OBC相切于点D,连接ED并延长交AC的延长线于点F

1)求证:AEAF

2)若BC4AC3,求O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,AC是弦,CD是O的切线,C为切点,ADCD于点D

求证:1AOC=2ACD;2AC2=AB·AD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点上,作,直线,交延长线于,连接,则的长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若边长为6的正方形ABCD绕点A顺时针旋转,得正方形ABCD′,记旋转角为a

I)如图1,当a60°时,求点C经过的弧的长度和线段AC扫过的扇形面积;

(Ⅱ)如图2,当a45°时,BCDC′的交点为E,求线段DE的长度;

(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.

查看答案和解析>>

同步练习册答案