分析 过C作CD垂直于AB,交BA延长线于点D,由∠B与∠ACB的度数,利用外角性质求出∠CAD的度数,在直角三角形ACD中,利用勾股定理求出CD与AD的长,在直角三角形BCD中,利用勾股定理求出BD的长,由BD-AD求出AB的长即可.
解答 解:过点C作CD⊥AB,垂足为点D,
∵∠B=30°,∠ACB=15°,
∴∠CAD=45°,
在Rt△ACD中,∠ADC=90°,∠CAD=45°,AC=6,
∴CD=AD=3$\sqrt{2}$km,
在Rt△BCD中,∠CDB=90°,∠B=30°,CD=3$\sqrt{2}$km,
∴BD=3$\sqrt{6}$km,
则AB=(3$\sqrt{6}$-3$\sqrt{2}$)km.
点评 此题考查了解直角三角形的应用,熟练掌握勾股定理是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 两人都对 | B. | 两人都不对 | C. | 甲对,乙不对 | D. | 甲不对,乙对 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com