精英家教网 > 初中数学 > 题目详情
(2013•徐汇区一模)梯形ABCD中,AB∥CD,CD=10,AB=50,cosA=
45
,∠A+∠B=90°,点M是边AB的中点,点N是边AD上的动点.
(1)如图1,求梯形ABCD的周长;        
(2)如图2,联结MN,设AN=x,MN•cos∠NMA=y(0°<∠NMA<90°),求y关于x的关系式及定义域;
(3)如果直线MN与直线BC交于点P,当P=∠A时,求AN的长.
分析:(1)过点C作CF∥AD,交AB于点F,得出平行四边形和直角三角形,求出AD,BC即可;
(2)过点N作NQ⊥AB,垂足为Q,求出y=MQ,求出AQ和AM,相减即可得出答案;
(3)分别延长AD、BC交于点E,连接EM,分为两种情况,1°当点P在CB的延长线上时,2°当点P在BC的延长线上时,画出图形,结合图形求出线段的长,即可得出答案.
解答:解:(1)过点C作CF∥AD,交AB于点F,如图1,
∴∠CFB=∠A,
∵∠A+∠B=90°,
∴∠CFB+∠B=90°,
∴∠FCB=90°,
∵AB∥CD,
∴四边形CDAF是平行四边形,
∴CF=AD,AF=CD=10,
∴BF=AB-AF=40
在Rt△BCF中,∠FCB=90°,∴cos∠CFB=
CF
BF

CF=BF•cos∠CFB=40×
4
5
=32=AD

BC=
BF2-CF2
=
402-322
=24

∴CABCD=10+32+50+24=116.

(2)过点N作NQ⊥AB,垂足为Q,
∴∠NQA=∠NQM=90°,
cosA=
AQ
AN

AQ=AN•cosA=
4
5
x

cos∠NMA=
MQ
MN

∴MQ=MN•cos∠NMA=y,
∵点M是边AB的中点,
AM=
1
2
AB=25

y=25-
4
5
x

定义域是0<x<
125
4


(3)分别延长AD、BC交于点E,连接EM.
∵∠A+∠B=90°,∴∠AEB=90°,AM=EM=BM=25,
AE=AB•cosA=50×
4
5
=40

直线MN与直线BC交于点P,
当∠P=∠A时,分两种情况:1°当点P在CB的延长线上时,如图4,
∵BM=EM,
∴∠BEM=∠EBM,
∵∠A+∠ABE=90°,
∴∠P+∠MEB=90°,
∴∠EMP=∠EMN=90°,
∵AM=EM,
∴∠AEM=∠A,
cos∠AEM=
EM
EN

EN=
EM
cosA
=
25
4
5
=
125
4

AN=AE-EN=40-
125
4
=
35
4

2°当点P在BC的延长线上时,如图5,
∵∠P+∠PNE=90°,∠ANM=∠PNE,
∴∠A+∠ANM=90°,
∴∠AMN=90°,
cosA=
AM
AN

AN=
AM
cosA
=
25
4
5
=
125
4

综合1°、2°,当∠P=∠A时,AN=
35
4
125
4
点评:本题考查了梯形性质,平行四边形的性质和判定,勾股定理,解直角三角形,直角三角形斜边上中线性质的应用,主要考查学生综合运用性质进行推理和计算的能力,难度偏大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•徐汇区一模)“数学迷”小楠通过从“特殊到一般”的过程,对倍角三角形(一个内角是另一个内角的2倍的三角形)进行研究.得出结论:如图1,在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
下面给出小楠对其中一种特殊情形的一种证明方法.
已知:如图2,在△ABC中,∠A=90°,∠B=45°.
求证:a2-b2=bc.
证明:如图2,延长CA到D,使得AD=AB.
∴∠D=∠ABD,
∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
∴∠D=45°,∵∠ABC=45°,
∴∠D=∠ABC,又∠C=∠C
∴△ABC∽△BCD
BC
CD
=
AC
BC
,即
a
b+c
=
b
a

∴a2-b2=bc
根据上述材料提供的信息,请你完成下列情形的证明(用不同于材料中的方法也可以):
已知:如图1,在△ABC中,∠A=2∠B.
求证:a2-b2=bc.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐汇区一模)在Rt△ABC中,∠C=90°,AC=5,AB=13,那么tanA等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐汇区一模)将抛物线y=x2沿y轴向上平移1个单位后所得抛物线的解析式是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐汇区一模)抛物线y=mx2-5mx+n与y轴正半轴交于点C,与x轴分别交于点A和点B(1,0),且OC2=OA•OB.
(1)求抛物线的解析式;                                        
(2)点P是y轴上一点,当△PBC和△ABC相似时,求点P的坐标.

查看答案和解析>>

同步练习册答案