精英家教网 > 初中数学 > 题目详情
2.如果水位升高2m时水位变化记作+2m,那么水位下降2m时水位变化记作(  )
A.-2mB.-1mC.1mD.2m

分析 根据水位升高2m时水位变化记作+2m,从而可以表示出水位下降2m时水位变化记作什么,本题得以解决.

解答 解:∵水位升高2m时水位变化记作+2m,
∴水位下降2m时水位变化记作-2m,
故选A.

点评 本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.2016年我国启动了新一代“E级超算”(计算速度达到每秒100亿亿次)样机系统的研制,预计今年底能够研制成功,这比美国计划在2025年造出“E级超算”提早8年,“E级超算”的计算速度用科学记数法表示为(  )
A.1.0×1017B.1.0×1018C.1.0×1019D.1.0×1020

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若关于x的一元二次方程(k+2)x2+3x+k2-k-6=0必有一根为0,则k的值是(  )
A.3 或-2B.-3或2C.3D.-2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.要使式子$\frac{5x}{\sqrt{x+2}}$有意义,则x的取值范围是(  )
A.x≠2B.x>-2C.x<-2D.x≠-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1和图2,在△ABC中,AB=13,BC=14,cos∠ABC=$\frac{5}{13}$.
探究:如图1,AH⊥BC于点H,则AH=12,AC=15,△ABC的面积S△ABC=84.
拓展:如图2,点D在AC上(可与点A、C重合),分别过点A、C作直线BD的垂线,垂足为E、F,设BD=x,AE=m,CF=n,(当点 D与A重合时,我们认为S△ABD=0).
(1)用含x、m或n的代数式表示S△ABD及S△CBD
(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;
(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.
发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,四边形中ABCD,AB∥CD,BC⊥AB,AD=CD=8cm,AB=12cm,动点M从A出发,沿线段AB作往返运动(A-B-A),速度为3(cm/s),动点N从C出发,沿着线段C-D-A运动,速度为2(cm/s),当N到达A点时,动点M、N运动同时停止.
(1)当t=5(s)时,则MN两点间距离等于3$\sqrt{7}$(cm);
(2)当t为何值时,MN将四边形ABCD的面积分为相等的两个部分?
(3)若线段MN与AC的交点为P,探究是否存在t的值,使得AP:PC=1:2?若存在,请求出所有t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列事件中是必然事件的是(  )
A.a 是实数,|a|≥0
B.打开数学课本时刚好翻到第60页
C.从一定高度落下的图钉,落地后钉尖朝上
D.在一个仅装着白球和黑球的袋中摸球,摸出白球

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列四个数中,最小的一个数是(  )
A.-$\sqrt{7}$B.-3C.-2$\sqrt{2}$D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列事件中,属于不可能事件的是(  )
A.投出的篮球会下落B.从装有黑球、白球的袋里摸出红球
C.367人中至少有2人是同月同日出生D.买1张彩票,中500万大奖

查看答案和解析>>

同步练习册答案