精英家教网 > 初中数学 > 题目详情

锐角△ABC的∠A逐渐增大时,它的外心逐渐向________边移动,当∠A增大到90°时,外心在________位置上.

答案:最大边,斜边中点
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网自选题:若P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
(1)若点P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4,则PB的值为
 

(2)如图,在锐角△ABC外侧作等边△ACB′连接BB′.求证:BB′过△ABC的费马点P,且BB′=PA+PB+PC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知锐角△ABC的边BC的长为6,面积为12,PQ∥BC,点P在AB上,点Q在AC上,四边形RPQS为正方形(RS与A在PQ的异侧),其边长为x,正方形RPQS与△ABC的公共面积为y.
(1)当正方形RPQS的边RS恰好落在BC上时,求边长x.
精英家教网 精英家教网
(2)当RS不落在BC上时,求y关于x的函数关系式以及自变量x的取值范围.(可以将图形画在备用的图形中)
精英家教网
(3)求y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,以锐角△ABC的边AB为直径作⊙O,交AC,BC于E、D两点,若AC=14,CD=4,7sinC=3tanB,则BD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

某学校计划将校园内形状为锐角△ABC的空地(如图)进行改造,将它分割成△AHG,△BHE,△CGF和矩形EF-GH四部分,且矩形EFGH作为停车场.经测量BC=120m,高AD=80m.
(1)若学校计划在△AHG上种草,在△BHE,△CGF上都种花,如何设计矩形的长、宽使得种草的面积与种花的面积相等?
(2)若种草的投资是每平方米6元,种花的投资是每平方米10元,停车场铺地砖投资是每平方米4元,又如何设计矩形的长、宽使得△ABC空地改造投资最小?最小为多少?

查看答案和解析>>

同步练习册答案