精英家教网 > 初中数学 > 题目详情
12、在△ABC中,∠C=2∠B,∠1=∠2,试说明AB=AC+CD.
分析:在AB上取一点E使AE=AC,根据SAS判定△ADC≌△ADE,从而得到DE=DC,∠AED=∠C.
因为∠AED=∠B+∠EDB,∠C=2∠B,所以BE=DE=DC.
因为AB=AE+BE,此时就转化为AB=AC+CD.
解答:证明:在AB上取一点E使AE=AC,
∵∠1=∠2,AE=AC,AD=AD,
∴△ADC≌△ADE.
∴DE=DC,∠AED=∠C.
∵∠AED=∠B+∠EDB,∠C=2∠B,
∴∠B=∠EDB.∴BE=DE.
又∵DE=DC,
∴BE=DC.
∵AB=AE+BE,
∴AB=AC+DC.
点评:本题考查了全等三角形的判定和性质;对线段进行割或补是证明线段和差问题的最好的方法,也是常用的方法,做题时注意运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC为边向△ABC外作等边△ABD和等边△ACE.
精英家教网
(1)如图1.连接BE、CD,BE与CD交于点O,
①证明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如图2,连接DE,交AB于点F.DF与EF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E、已知△ABC中与△ABD的周长分别为18cm和12cm,则线段AE的长等于
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,a=
2
,b=
6
,c=2
2
,则最大边上的中线长为(  )
A、
2
B、
3
C、2
D、以上都不对

查看答案和解析>>

同步练习册答案