精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线x轴正半轴交于点A30).以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.则E的坐标是____

【答案】1+1+).

【解析】

把点A30)代入抛物线即可求得a的值,正方形OABC可得点C坐标,代入函数解析式求得点D坐标,可知点E横坐标,再利用正方形BDEF的性质得出点E纵坐标问题得解.

解:把点A30)代入抛物线

解得a

∵四边形OABC为正方形,

∴点C的坐标为(03),点D的纵坐标为3

代入yx2x

解得x11+x21(不合题意,舍去),

因此正方形BDEF的边长B1+32

所以AF3+21+

由此可以得出点E的坐标为(1+1+);

故答案为:(1+1+).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线轴、轴分别交于点,抛物线经过点,将点向右平移5个单位长度,得到点

(1)求点的坐标;

(2)求抛物线的对称轴;

(3)若抛物线与线段恰有一个公共点,结合函数图象,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了   人;在扇形统计图中,表示支付宝支付的扇形圆心角的度数为   

(2)将条形统计图补充完整.观察此图,支付方式的众数   ”;

(3)在一次购物中,小明和小亮都想从微信”、“支付宝”、“银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 ,是一元二次方程的两个实数根,且,抛物线的图象经过

1)求抛物线的解析式;

2)设抛物线与轴的另一个交的为,抛物线的顶点为,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2021年世界园艺博览会将在扬州枣林湾举办,有一块枣林湾博览会的直传牌CD竖立在路边,其中CB是支柱.小梅同学想计算出CD的长度.于是在A处测得支柱B处的俯角为30°.测得顶端D处的仰角为42°,同时测量出AB的长度是10mBC的长度是6m.求宜传牌CD的长度(结果保留小数点后一位).(参考数据:1.73sin42°≈0.67cos42°≈0.74tan42°≈0.90

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场老板对一种新上市商品的销售情况进行记录,已知这种商品进价为每件 40 元,经过记录分析发现,当销售单价在 40 元至 90 元之间40 元和 90 元)时,每月的销售量 y(件)与销售单价 x(元)之间的关系可近似地看作一次函数,其图象如图所示.

(1)求 y 与 x 的函数关系式.

(2)设商场老板每月获得的利润为P(元),求 P 与 x 之间的函数关系式;并求出利润的最大时销售单价为多少元?

(3)如果想要每月获得 2400 元的利润,那么销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.

(1)当PEAB,PFBC时,如图1,则的值为   

(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;

(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一商品销售某种商品,平均每天可售出20件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.

1)若每件商品降价2元,则平均每天可售出______件;

2)当每件商品降价多少元时,该商品每天的销售利润为1600元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点为(1,4)的抛物线与直线交于点A(2,2),直线轴交于点B与轴交于点C

(1)的值及抛物线的解析式

(2)P为抛物线上的点,点P关于直线AB的对称轴点在轴上,求点P的坐标

(3)D轴上方抛物线上的一点,点E为轴上一点,以A BED为顶点的四边为平行四边形时,直接写出点E的坐标。

查看答案和解析>>

同步练习册答案