精英家教网 > 初中数学 > 题目详情
(2012•海南)如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是(  )
分析:由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
解答:解:∵∠A是公共角,
∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);
故A与B正确;
AD
AB
=
AB
AC
时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);
故D正确;
AB
BD
=
CB
CD
时,∠A不是夹角,故不能判定△ADB与△ABC相似,
故C错误.
故选C.
点评:此题考查了相似三角形的判定.此题难度不大,注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•海南)如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是
9
9

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•海南)如图,正比例函数y=k1x与反比例函数y=
k2
x
的图象相交于A、B两点,若点A的坐标为(2,1),则点B的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•海南)如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧
AmB
上的一点,则tan∠APB的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•海南)如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D恰好落在对角线AC上的点E、F处,折痕分别为CM、AN,
(1)求证:△ADN≌△CBM;
(2)请连接MF、NE,证明四边形MFNE是平行四边形;四边形MFNE是菱形吗?请说明理由;
(3)点P、Q是矩形的边CD、AB上的两点,连接PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ∥MN,且AB=4cm,BC=3cm,求PC的长度.

查看答案和解析>>

同步练习册答案